Preprint typeset in JHEP style - HYPER VERSION

CoulombHiggs.m v6.0

Boris Pioline

ABSTRACT: Basic documentation for the Mathematica package CoulombHiggs .m
available from http://www.lpthe.jussieu.fr/~pioline/computing.html
and from https://github.com/bpioline/CoulombHiggs

Contents

1. Summary

1.1 Basic usage
1.1.1 Coulomb branch formula
1.1.2 Higgs branch formula
1.1.3 Jeffrey-Kirwan residue formula
1.1.4 Flow tree formula
1.1.5 Attractor tree formula
1.1.6 Quiver Yangian algorithm

1.2 Online documentation

1.3 History

1.4 Usage in literature

2. Variables and Symbols
2.1 Symbols
2.2 Global variables
2.3 Environment variables

3. Higgs branch formula

4. Coulomb branch formula
4.1 Generating the sum over all splittings
4.2 Computing the Coulomb index
4.3 Contributions from scaling solutions
4.4 Simplifying the result
4.5 Mutations

5. Jeffrey-Kirwan residue formula
5.1 Constructing the integrand and extracting the residue
5.2 Enumerating stable flags
5.3 Conversion and visualisation
5.4 Constructing charge matrices

6. Flow tree formula
7. Attractor Tree formula
8. Joyce formula

9. Non-commutative Donaldson-Thomas invariants

0 0 ~J O OO e WwN

© oo

10

12

13
13
14
15
16
16

17
18
19
20
20

21

23

24

25

10. Utilities 26

1. Summary

The MATHEMATICA package CoulombHiggs.m provides a suite of routines com-
pute (specializations of) the Hodge polynomial

d

Q7,Cyst) = Y (=ylP Ty (M) (1.1)

p,q=0

of the moduli space M of semi-stable representations of a quiver () with antisym-
metric adjacency matrix cy; (such that o;; counts the net number of arrows ¢ — 7,
with arrows j — 4 counted negatively), dimension vector v = (Ny,..., Ng) and
stability parameters ((i,. .., k) such that >, N;(; = 0. When My, is a smooth
projective variety of complex dimension d, (1.1) is a Laurent polynomial with
integer coefficients, invariant under separate inversions y — 1/y,t — 1/t. When
v is not primitive, it is useful to introduce the rational invariant

(v, ¢,y.t) Z i /y ATy 20/ C y' 1) (1.2)

which satisfies simpler wall-crossing identities. Finally, Q(v,(,y,t) may be ex-
pressed in terms of the stack invariants Gyiges(7, ¢, y,t) defined by [1, (4.1)]

_ 1 i
Q(’%CJ%U: Z WHGnggS {Ml(’MI(()}a{ChCK}uyut)
7 (%)
Zfz{lj\f\‘m}):ﬁ
N || N for i=1,...,

(1.3)

where N is the dimension vector corresponding to . The stack invariants satisfy
yet simpler wall-crossing identities, but their physical meaning is less transparent.
Note that they differ from the stacky invariants by a factor (1/y — y).

The package implements the following main formulae:

e the Higgs branch formula is based on Reineke’s solution to the Harder-
Narasimhan recursion [2] for quivers with primitive dimension vector and
no closed loops. The formula apparently also applies to quivers with oriented
loops but without superpotential and for non-primitive dimension vector, pro-
vided the Hodge numbers h, ,(M) are defined using intersection homology;

e the Coulomb branch formula [3, 4, 5, 6] is based on a physical picture of BPS
states as bound states of single-centered black holes; it applies to any quivers
with or without oriented loops and expresses the index in terms of ‘single-
centered invariants’ Qg(v;,t), which are independent of stability conditions,
and conjecturally depend only on t;

e the Joyce formula [7] expresses the rational invariants Q(v, (1, ¥,) in terms of
the invariants Q(v;, (2, ¥, t), and similarly the stack invariants Giggs (7, C1, ¥, t)
in terms of Guiggs(7i, C2, Y, t), where v =" 7,.

o the JK residue formulae [8] (see also [9, 10]) is based on localization, and
evaluates the y-index Q(v,(,y,y) as a suitable sum of residues of a certain
rational or trigonometric function; when ~ is not primitive, the residue for-
mula computes the value at y = ¢ of the rational invariant (1.2).

e the flow tree formula [11] is based on the attractor flow tree conjecture, and
expresses the total index in terms of attractor indices 2. (v;,y,t) which are
also independent of stability conditions, but may depend on both y and ¢; the
attractor index is defined by Q. (v,y,t) = Q(v, (s, y,t) where (, is a generic
perturbation of the attractor point (, = —KapNp;

e the attractor tree formula [12] (based on ideas in [13]) is (believed to be)
equivalent to the flow tree formula, but it does not rely on perturbing the
DSZ matrix v;; in intermediate steps.

e the Quiver Yangian algorithm [14], based on ideas in [15], computes unrefined
NCDT invariants for brane tilings.

The package file CoulombHiggs.m and various example files can be obtained
from the author’s webpage,

http://www.lpthe. jussieu.fr/~pioline/computing.html

1.1 Basic usage

Assuming that the file CoulombHiggs.m is present in the user’s MATHEMATICA
Application directory, the package is loaded by entering

m[1]:= <<CoulombHiggs*‘
out[1]:= CoulombHiggs 6.0 - A package for evaluating quiver
invariants.

If the file CoulombHiggs .m has not yet been copied in the user’s MATHEMAT-
ICA Application directory but is in the same directory as the notebook, evaluate
instead

m[1]:= SetDirectory[NotebookDirectory[]]; <<CoulombHiggs*
out[1]:= CoulombHiggs 6.0- A package for evaluating quiver
invariants.

1.1.1 Coulomb branch formula

The basic usage of CoulombBranchFormula is illustrated below: !

mi1]:= Simplify[CoulombBranchFormula[4{{0, 1, -1},{-1, 0, 1}, {1,
-1, o}}, {1/2, 1/6, -2/3}, {1, 1, 1}1]
Out[1]:= 2—|—yi2—|—y2+0m8({1,1,1},y,t)

The first argument corresponds to the matrix of DSZ products «;; (an an-
tisymmetric matrix of integers), the second to the FI parameters (; (a vector of
rational numbers), the third to the dimension vector N; (a vector of integers).
Here, the Dolbeault polynomial of the moduli space of a three-node Abelian cyclic
quiver Cy 44 with 4 arrows between each consecutive node is expressed in terms
of the single-centered index Qg(y1 + Y2 + 73, ¥, t)-

1.1.2 Higgs branch formula

The arguments of HiggsBranchFormula are the same as for CoulombBranchFormula:

mi1]:= Simplify[HiggsBranchFormulal[{{0, 3},{-3, 0}}, {1/2,-1/2},
{2, 2}]1]
(v2+1)(v3+y*+1)
y5

Qut[1]:= —

The above command computes the invariant (v, ¢, ¢, y) for the Kronecker quiver
K3(2,2) with 3 arrows, dimension vector v = (2,2) and stability parameters
¢ = (1/2,—1/2). This is computing by expressing €2(7) in terms of the rational
invariant Q(v), then Q(7) in terms of the stack invariant, which is then evaluated
using Reineke’s formula. Note that the result is a symmetric Laurent polynomial
with integer coefficients, despite the fact that v is not primitive.

1.1.3 Jeffrey-Kirwan residue formula

Beware: the routine JKIndex appears to have become corrupted due
to changes in v5. Please use JKIndexSplit or revert to v4.

Note the following changes in v2.0: the fugacity y is no longer a parameter of
CoulombBranchFormula and QuiverBranchFormula, and the former computes the Dolbeault
polynomial in terms of Qg(a;,t), rather than expressing the Poincaré polynomial in terms of
Qs(ay). Starting in v2.1, if >°, N;¢; does not vanish, rather than issuing an error message, a
uniform translation is applied internally to the (;’s. Other changes are highlighted by margin
notes below.

The third main routine JKIndex implements the Jeffrey-Kirwan residue for-
mula. Its first argument ChargeMatrix is an extended charge matrix, where the
rows encode the charges of the chiral multiplets under U(1)-":, along with the R-
charges and the multiplicity. The second argument Nvec is the dimension vector
N;, and the last argument Etavec is the stability condition 7, a vector of length
>; Ni. These arguments can be generated by using JKInitialize, which takes
as arguments the antisymmetric DSZ matrix o;;, symmetric R-matrix r;;, stabil-
ity vector (; and dimension vector N;, and sets various global variables including
JKChargeMatrix and JKEta. For example, the index of a two-node quiver with
three arrows, dimension vector N; = (1,2), stability vector n = (1,—2/5,—3/5)
is obtained from

mi:- JKInitialize[{{0, 3}, {-3, 0}}, {{0, o}, {o, o}}, {1, 2},
{1, -1/2}]; JKIndex[JKChargeMatrix, {1, 2},JKEtavec]
owtili= {y? + 1+ 5}

The result produces a list of contributions from each contributing stable flag,
which consists of a single flag in this case. The routine first determines the
stable flags which give a non-zero contribution to the Euler number Q(v,(, 1,1),
and then uses the same flags to compute the y-genus Q(7, (,y,y), which is more
time-consuming. The result for the Euler number can be accessed from the global
variable JKEuler. Note that flavor fugacities can be switched on by using the
routine FlavoredRMatrix to construct the matrix of R-charges (which was chosen
to vanish in the previous example).

A variant JKIndexSplit of the same routine is provided, which computes
the same index by first splitting the vector multiplet determinants as a sum over
(equivalence classes of) permutations, using Cauchy’s determinant formula, and
computes the Jeffrey-Kirwan residue of each term separately (the two procedures
are of course identical for Abelian quivers). This simplifies both the enumeration
of stable flags (as the number of singular hyperplanes due to vector multiplets is
reduced from N;(N;—1) to O(N;)) and the computation of the residues. Moreover,
for quivers with loops this splitting appears to match the sum over decompositions
v = Y «; in the Coulomb branch formula [16]. For example, applying this
splitting procedure on the second node for the previous example gives

mi:- JKInitialize[{{0, 3}, {-3, 0}}, {{0, o}, {o, o}}, {1, 2},
{1, -1/2}1; JKIndexSplit[JKChargeMatrix, {1, 2},JKEta,{2}]

Byt (y4+y2+1)2
Out[1]:= {{ 291 }, { 2yt }}

which sums up to the same result as before y* + 1 + 1/y?. Each entry in the
result corresponds to the contribution of a given multi-partition of the dimension
vector, the list of which is stored (along with respective multiplicities) in the
global variable JKListAllPerms. Again, the intermediate results for the Euler

-

number can be retrieved from the global variable JKEuler.

For the evaluation of the residue, we note that it is often more efficient to use
a rational representation of the integrand (using exponentiated Cartan variables)
than a trigonometric representation. The former is used when $QuiverTrig is
set to False. If this variable is set to a value different from True or False, then
the routine does not attempt to compute the full y-genus and returns the FEuler
number instead.

Finally, by setting $QuiverTrig to True and $QuiverMaxPower > 0, the
routine will attempt to compute the elliptic genus up to order ¢°duiverMaxPover
using the residue prescription in [10]. Note however that it will only include the
same hyperplanes which contribute to the Euler number, and not hyperplanes
which decouple as 7 — iocc.

1.1.4 Flow tree formula

The arguments for FlowTreeFormula are the same as for CoulombBranchFormula:

mi1]:= Simplify[FlowTreeFormulal4{{0, 1, -1},{-1, 0, 1}, {1, -1,
O}}, {1/2’ 1/6, _2/3}: {1: 1: 1}]]
Out[1]:= OmAtt({l,l,l},y)

In this case, the sum over tree vanishes. Comparing with the result from the
Coulomb branch formula above, one concludes that the attractor index Q.(v) =
Qs(v) + ¥* + 2 + 1/y?, corresponding to the sum of the contributions of single
centered and scaling solutions.

1.1.5 Attractor tree formula

As of version 5.2, the package contains an implementation of a formula implicit
in [13], which allows to express the index (v, (,y, t) in terms of attractor indices
Q.(7,¢,y,t), without perturbing the DSZ matrix at any stage. The syntax is
identical to the flow tree formula,

mi1]:= Simplify[AttractorTreeFormulal4{{0, 1, -1},{-1, 0, 1}, {1,
-1, o3}, {1/2, 1/6, -2/3}, {1, 1, 1}1]
Out[1]:= OmAtt({l,l,l},y)

1.1.6 Quiver Yangian algorithm

The algorithm relies on a matrix hMat whose entry (i,) lists the heights h, of
arrows a : ¢ — J. These heights are linear combinations of three parameters
hi, ho, hs such that, for all vertices i € Qg

Vi: Y h(a)—) h(a) =0 (1.4)

a:i—j a:j—1

and for all monomials F' € ()5 in the superpotential W =W, — W_|

VE:) I(a)=hs (1.5)

acF

These heights, as well as the bipartite potential W = W, —W_ are pre-computed
for a number of common brane tilings, listed by

In[1]:=

Out[1]:=

Simplify[ListKnownBraneTilings]
O3

: Conifold

1 C? x C)2

:C?x C/3

1 C3/2 %2

:SPP

: L131

P2 =0C3/(1,1,1)

:F0.1=Plx P1

© 00 N O O = W N =

For computing unrefined NCDT invariants for the conifold up to order z°, you

may use
mf1]:= {Tiling, Fan, hMat, Wp, Wm, vi, v2} =
BraneTilingsData[[2]]; NCDTSeriesFromCrystal[hMat, {1, O},
5]
outfil:= 1+ z[1] + 2y32[1]z[2] + 4y°z[1%2[2] + 2y°2[1]22[2] + y'z[1]x[2]* +
8ylx[1]%2[2)% + 14y [1]32[2)* + 4y'3x[1]22[2)?

and set y = —1 in the final result. Setting y = 1 instead gives the number of
molten crystals at each order.

1.2 Online documentation

The package contains many more routines, documented below, which can be used
independently. Basic inline documentation can be obtained by typing e.g.

In[1]:=

Out[1]:=

?CoulombBranchFormula
CoulombBranchFormula[Mat_,Cvec_,Nvec_] expresses the
Dolbeault polynomial of a quiver with dimension vector gam
in terms of the single center degeneracies OmS[alpha_i,t]
using the Coulomb branch formula, computing all CoulombH
factors recursively using the minimal modification
hypothesis. Also provides list of CoulombH factors if

$QuiverDisplayCoulombH is set to True

1.3 History

The first version of this package was released together with the preprint [1] where
a general algorithm for computing the index of the quantum mechanics of multi-
centered BPS black holes (the Coulomb index) was outlined. The version 2.0,
released along with the preprint [5], allowed to compute the Dolbeault-Laurent
polynomial, relax assumptions on single-centered indices for basis vectors, study
the effect of generalized mutations, and more. Version 2.1, released along with the
review [6], was optimized to speed up the evaluation of Coulomb indices. Version
3.0 introduced an early version of the Jeffrey-Kirwan residue formula. Version 4.0,
released along with [11], introduced the flow tree formula. Version 5.0, released
along with [16], introduced more robust implementation of the Jeffrey-Kirwan
residue formula. Version 6.0, released along with [12], introduces the attractor
tree formula and the Quiver Yangian algorithm, along with many routines for
dealing with brane tilings.

1.4 Usage in literature

The following papers by other authors have acknowledged using this package for
part of their computations (non exhaustive list): [17, 18, 19, 20, 21]

2. Variables and Symbols

2.1 Symbols

e yv: fugacity conjugate to the sum of Dolbeault degrees p + ¢ (i.e. angular
momentum);

e z: chemical potential, y = e"™;

e t: fugacity conjugate to the difference of Dolbeault degrees p — g;

e g: modular parameter in the elliptic genus, g = €>™7;

e tau: elliptic modulus, ¢ = %™, for elliptic genus computations;

e Om[charge vector_,y_]1:denotes the refined index Q(v, y);
e Omb[charge vector_,y_]:denotes the rational refined index Q(v,y);

e OmS[charge vector_,y_,t_]:denotes the single-centered index Qg(y, y,).
e OmS[charge vector_,y_ J:denotes Qs(v,y) = Qs(v,y,t = 1).

e OmS[charge vector_]:denotes Qs(7, y), under the assumption that it is indepen-
dent of y (which is conjectured to be the case for generic superpotential)

e OmAtt[gam_,y_]:denotes the attractor index with charge gam

e OmAttb[gam_,y_]:denotes the rational attractor index with charge gam

e OmT[charge vector_,y_J:denotes the (unevaluated) function Qo (7, y);

e Coulombgllist of charge vectors_,y_1:: denotes the (unevaluated) Coulomb

—) —

index gooulomb({@i}, {ci}, y), leaving the FI parameters unspecified;
e HiggsGlcharge vector_,y_]:denotes the (unevaluated) stack invariant Giggs (7, ¥);

e CoulombH[list of charge vectors_,multiplicity vector_,y_]:denotes the (uneval-
uated) factor H({a;},{n;},y) appearing in the formula for Q. (> n;a;, y) in
terms of Qg(w,y).

e QFact[n_,y_]:represents the (non-evaluated) g-deformed factorial [n, y]!

e u[i,s]: s-th Cartan variable for the i-th gauge group when the trigonomet-
ric representation is used, exponentiated version e**“= of the same when a
rational representation is used.

eut[i,s]: Cartan variables in rotated basis adapted to a singularity, so that the
flagis 11 = - -+ = uk n, = 0 in trigonometric representation, or 41 = -+ =
Uk, N, = 1 in rational representation.

e th[i_]: Chemical potential for flavor symmetry, used in FlavoredRMatrix

e Theta[z_]: Jacobi Theta series 0;(z,7) = —ig!/®(e/™* — e7172)) [T (1=¢5)(1-
e27rizqk)(1 _ 6—27rizqk)

e Eta: Dedekind Eta series (1) = ¢/ T~ (1 — ¢")

e h1,h2 h3: Parameters for the heights h(a) used by the Quiver Yangian algo-
rithm

2.2 Global variables

e JKListuAll: Flat list of all Cartan variables u[i,s], i =1... K, s=1,...N;

e JKListuDisplay: Same as JKListuAll, only used by FlagToHyperplane for
display

e JKListu: Flat list of unfrozen Cartan variables ul[i, s]
e JKListut: Flat list of unfrozen rotated Cartan variables ut[i, s]

e JKFrozenCartan: List of pairs {7, s} which specifies the list of Cartan variables
u; s which should be frozen to 0 (or 1 in rational representation), rather than
integrated over.

e JKFrozenMask: Vector of booleans indicating non-frozen entries in JKListuAll
e JKFrozenRuleEuler: Rule for replacing the frozen uli, s] by 0

e JKFrozenRuleRat: Rule for replacing the frozen u[i, s| by 1

e JKEuler: List of contributions of all stable flags to the Euler number, as com-
puted by JKIndex or JKIndexSplit

e JKChiGenus: List of contributions of all stable flags to the chi-genus, as com-
puted by JKIndex or JKIndexSplit

e JKListAl1lSings: List of singularities, as computed by JKIndex or JKIndexSplit

e JKListAllStableFlags: List of all stable flags, as computed by JKIndex or
JKIndexSplit

e JKRelevantStableFlags: List of stable flags contributing to the Euler number,
as computed by JKIndex or JKIndexSplit

e JKListAllPerms: List of multi-partitions, as computed by JKIndexSplit

e JKVertexCoordinates: Coordinates of vertices for DisplayFlagTree, set by
JKInitialize

e JKVertexLabels: Labels of vertices for DisplayFlagTree, set by JKInitialize

e BraneTilingsData: List of {Name, Fan, hMat, Wp, Wm, v1,v2 } for known
brane tilings, where Fan is the toric fan (see PlotToricFan), hMat the height
matrix (see NCDTSeriesFromCrystal), W = Wp — Wm the superpotential (see
ListPerfectMatchings) and v1, v2 the two basis vectors used by PlotTiling
to display the tiling.

2.3 Environment variables

e $QuiverPerturbl: Sets the size of the perturbation e; = 1/$QuiverPerturb of
the DSZ products, set to 1000 by default.

e $QuiverPerturb2: Sets the size of the perturbation e, = 1/$DSZPerturb of the
DSZ products, set to 10! by default.

e $QuiverNoLoop: If set to True, the quiver will be assumed to have no oriented
loop, hence all H factors and all Qg(«) will be set to zero (unless « is a basis
vector). Set to False by default.

e $QuiverTestLoop: If set to True, all H factors and Qg(«) corresponding to
subquivers without loops will be set to zero (unless « is a basis vector). Set
to True by default. Determining whether a subquiver has loops is time-
consuming, so for large quivers it may be advisable to disable this feature.
Note that $QuiverNoLoop takes precedence over this variable.

e $QuiverMultiplier: Set to 1 by default. If m = $QuiverMultiplier is a posi-
tive scalar (possibly a formal variable), then all entries of the DSZ matrix Mat
used in evaluations of Coulombg, Treeg, or HiggsG are effectively multiplied
by m. If m is a matrix, then entries Mat|[[i, j]] are multiplied by m;;.

— 10 —

e $QuiverMultiplierAssumption: Specifies assumptions about formal variables
used in $QuiverMultiplier, for example m € Integers

e $QuiverVerbose: If set to False, all consistency tests on data and corresponding
error messages will be skipped. Set to True by default.

e $QuiverDisplayCoulombH: If set to True, the routine CoulombBranchFormula
will return a list {Q,R} where Q is the Poincaré-Laurent polynomial and R is
a list of replacement rules for the CoulombH factors. Set to False by default.

e $QuiverPrecision: Sets the numerical precision with which all consistency
tests are carried out. This is set to 0 by default since all data are assumed to
be rational numbers. This can be set to a small real number when using real
data, however the user is warned that rounding errors tend to grow quickly.

e $QuiverRecursion: If set to 1 (default value), then the new recursion relations
from [1, v2] are used for computing CoulombF; if set to 0 the recursion relation
from [1, v1] is used instead.

e $QuiverOmSbasis: Set to 1 by default. If set to 0, the routines SimplifyOmSbasis
and SimplifyOmSbasismult are deactivated, so that the assumption that ba-
sis vectors carry Qg({v;) = g1 is relaxed.

e $QuiverCoulombOpt: Set to 1 by default. If set to 0, the routines CoulombF,
CoulombG, CoulombIndex will use the non-optimized code provided in version
2.0, otherwise they use the optimized code provided in version 2.1. Before
v5.1, this was called $QuiverOpt !

e $QuiverFlowTreeOpt: Set to 0 by default. If set to 1 or 2, the first or second
alternative recursion in [11, (2.64)] will be used to evaluate the tree index.

e $QuiverFlowTreeMethod: Set to 0 by default. If set to 1, the wall-crossing
in NonAbelianTreeFlowFormula will be computed the Coulomb branch for-
mula, otherwise it is computed using Reineke’s formula for Abelian stack
invariants.

e $QuiverNoVM: Set to False by default. If set to True, singular hyperplanes from
vector multiplet determinant will be ignored in JKIndex and JKIndexSplit.

e $QuiverTrig: Set to True by default. If set to False, exponentiated variables
will be used for the residue computation in JKIndex and JKIndexSplit.

e $QuiverMaxPower: Maximal power in the g-expansion of the elliptic genus. Set
to 0 by default.

e $QuiverMutationMult: Equal to 1 by default. Set to M, defined in Eq. (1.8)
of [22] when dealing with generalized quivers.

e $QuiverVertexLabels: specifies the vertex labels to be used by PlotQuiver
and PlotTiling.

— 11 —

3. Higgs branch formula

eHiggsBranchFormula[Mat_,Cvec_,Nvec_]:standalone routine which computes
the Poincaré-Laurent polynomial of a quiver with DSZ products «;; = Mat[[¢, j]]
(possibly rescaled by $QuiverMultiplier), dimension vector NN; = Nvec[[i]],
FI parameters (; = Cvec|[i]], using Reineke’s formula. It is assumed, but not
checked, that the quiver has no oriented loop;

e StackInvariant[Mat_,Cvec_,Nvec_,y_]:gives the stack invariant Giggs(7, ¢, y)
of a quiver with DSZ matrix a;; = Mat[[i, j]], possibly rescaled by an overall
factor of $QuiverMultiplier, FI parameters (; = Cvec[[i]], dimension vec-
tor N; = Nvec|[[i]], using Reineke’s formula; the answer is written in terms of

unevaluated g-deformed factorials QFact [n,y];

e AbelianStackInvariant[Mat_,Cvec_,y_]:gives the Abelian stack invariant
of a quiver with DSZ matrix «;; = Mat|[[s, j]], possibly rescaled by an overall
factor of $QuiverMultiplier, FI parameters (; = Cvec[[i]], using Reineke’s
formula; coincides with StackInvariant with Nvec= {1,...1} except that
tests of marginal or threshold stability are performed (unless $QuiverVerbose
is set to False);

e OmToOmb[f_]:expresses any Q(v,y) in f in terms of Q(v,y)’s;
e OmbToOm(f_]:expresses any Q(v,) in f in terms of Q(v,y)’s;

e OmbToHiggsG[Cvec_,f_ J:expresses any (v,y) in f in terms of the (uneval-
uated) stack invariants Griggs(7,y) using [1, (4.1)]; if the first argument is
omitted, a generic stability condition is assumed.

e HiggsGToOmb[Nvec_,y_]:expresses any Ghiggs(7,¥) in in terms of the rational
refined indices (v, y) using [1, (4.5)]; if the first argument is omitted, a
generic stability condition is assumed.

e EvalReinekeIndex[Mat_,Cvec_,f_

in f as ReinekeIndex[Mat2,Cvec2,y|, where Mat2, PMat2, Cvec2 are computed
from the list of vectors Li and the quiver data Mat, Cvec.

]:evaluates any Coulombg|Li,y| appearing

e ReinekeIndex[Mat_,Cvec_,y_]:computes the stack invariant after perturbing

the stability parameters.

— 12 —

4. Coulomb branch formula

e CoulombBranchFormulal[Mat_,Cvec_,Nvec_]:computes the Dolbeault polyno-
mial of a quiver with DSZ products «;; = Mat[[i, j]], dimension vector N; =
Nvecl[i]], FI parameters ¢; = Cvec[[i]], in terms of single-centered invari-
ants (2s. This standalone routine first constructs the Poincaré-Laurent poly-
nomial, evaluates the Coulomb indices gcouomn, determines the H factors
recursively using the minimal modification hypothesis and finally replaces
y by t in the argument of (s to construct the Dolbeault polynomial. If
$QuiverDisplayCoulombH is set to True, the routine returns a list {Q,R},
where (is the Poincaré polynomial and R is a list of replacement rules for
the CoulombH factors. For quivers without loops, the process can be sped
up greatly by setting $QuiverNoLoop to True. For complicated quivers it is
advisable to implement the Coulomb branch formula step by step, using the
more elementary routines described below.

4.1 Generating the sum over all splittings

e QuiverPoincarePolynomial[Nvec_,y_]:constructs the Poincaré-Laurent poly-
nomial (v, (,y,t) as a sum over all partitions of the dimension vector Nvec.
Coincides with QuiverPoincarePolynomialRat for primitive dimension vec-
tor;

e QuiverPoincarePolynomialRat[Nvec_,y_]:constructs the rational Poincaré-
Laurent polynomial (v, (,y,t) as a sum over all partitions of the dimension
vector Nvec ;

e QuiverPoincarePolynomialExpand[Mat_,PMat_,Cvec_, Nvec_, ()_]: evalu-
ates the Coulomb indices gooulomp and total single-centered indices Qo4 (v, ¥)
appearing in the Poincaré-Laurent polynomial Q of a quiver with DSZ prod-
ucts a;; = Mat[[4, j]], perturbed to PMat|[[4, j]], dimension vector N; = Nvec[[d]],

FI parameters (; = Cvec[[d]];

e ListAllPartitions[gam_ J:returns the list of unordered partitions {a;} of the
positive integer vector v as a sum of positive, non-zero integer vectors «;;

eListAllPartitionsMult[gam_]:returns the list of unordered partitions {c;, m;}
of the positive integer vector v as a sum of positive, non-zero integer vectors
o; with multiplicity my;

e ListSubQuivers[Nvec_]:gives a list of all dimension vectors less or equal to
Nvec;

e SymmetryFactor[Li_]:gives the symmetry factor 1/|Aut({ay, oo, -+, ap}| for
the list of charge vectors Li;

e OmTRat[Nvec_,y_1: gives the rational total invariant Q. (7,%y) in terms of
Qo (77, 7). Coincides with the latter if «y is primitive.

e OmTToOmS[f_]:expands out any Q4 (7y,y) in f into H factors and Qg’s;

— 13 —

4.2 Computing the Coulomb index

e SubDSZ[Mat_,PMat_,Cvec_,Li_]:gives the DSZ matrix, perturbed DSZ matrix
and FI parameters of the Abelian subquiver made of the charge vectors in
list Li;

e CoulombF[Mat_,Cvec_]:returns the index of collinear solutions F'({ay, - - - &, }, {¢1, - - ¢, })
with DSZ products &;; = Mat[[i, j]|, FI terms ¢ = Cvec|[¢]] and trivial order-

ing.

e CoulombG[Mat_]:returns the index of scaling collinear solutions G ({1, - - - &, })
with DSZ products &;; = Mat[[z, j]| and trivial ordering. The total angular

momentum), . Mat[[4, j]] must vanish;

e CoulombIndex[Mat_,PMat_,Cvec_,y_]:evaluates the Coulomb index gcouomn ({1, - - -
an}t;{c1, - ¢}, y) with DSZ products a;; = Mat([[z, j]|, perturbed to PMat|][i,j]]
so as to lift accidental degeneracies, possibly rescaled by an overall factor of
$QuiverMultiplier, FI terms ¢; = Cvec|[i]], angular momentum fugacity y;

e CoulombFNum[Mat_]: computes numerically the index F'({aq, ... &,}, {¢1, ... })
with DSZ matrix &;; = Mat[[¢, j|] and FI parameters ¢; = Cvec|[i]]. For test-
ing purposes only, works for up to 5 centers.

e CoulombGNum[Mat_]:computes numerically the scaling index G(&y, . . . &) with
DSZ matrix &;; = Mat|[i, j]]. For testing purposes only, works for up to 6
centers.

e CoulombIndexNum[Mat_,PMat_,Cvec_,y_]:returns the Coulomb index gcouiomp ({1, - - -
ant; {e1, - e}, y) with DSZ products «;; = Mat[[i, j]], possibly rescaled by
an overall factor of $QuiverMultiplier, FI terms ¢; = Cvecl[i]], angular mo-
mentum fugacity y, by searching collinear solutions numerically; For testing
purposes only, works for up to 5 centers. The output is a list of contributions
from each collinear solution.

e EvalCoulombIndex[Mat_,PMat_,Cvec_,f_]:evaluates any Coulombg[Li,y| ap-
pearing in f as CoulombIndex[Mat2, PMat2, Cvec2,y|, where Mat2, PMat2, Cvec?2

are computed from the list of vectors Li and the quiver data Mat,PMat, Cvec.

e EvalCoulombIndexAtt[Mat_,PMat_,f_]:evaluates any Coulombg|Li,y| ap-
pearing in f as CoulombIndex[Mat2, PMat2, Cvec2,y|, where Mat2, PMat2 are
computed from the list of vectors Li and the quiver data Mat, PMat and Cvec?2
are the respective attractor moduli.

— 14 —

4.3 Contributions from scaling solutions

e CoulombBranchFormulaFromH[Mat_,Cvec_,Nvec_,R_ J:returns the Dolbeault
polynomial of a quiver with DSZ products «;; = Mat|[[z, j]|, dimension vector
N; = Nvecl[i]], FI parameters (; = Cvecl[i]], using the rule R to replace all
CoulombH factors.

e CoulombHSubQuivers[Mat_,PMat_,Nvec_,y_]:computes recursively all CoulombH
factors for DSZ matrix Mat, perturbed to PMat, and any dimension vector
strictly less than Nvec; relies on the next two routines:

e ListCoulombH[Nvec_,()_]: returns returns a pair {ListH, ListC} where ListH
is a list of CoulombH factors possibly appearing in the Poincaré-Laurent poly-
nomial Q of a quiver with dimension vector Nvec, and ListC is the list of
coefficients which multiply the monomials in Qg(«y;, y) canonically associated
to the H factors in Q.

e SolveCoulombH[ListH_,ListC_, R_]: returns a list of replacement rules for
the CoulombH factors listed in ListH, by applying the minimal modification
hypothesis to the coefficients listed in ListC. The last argument is a replace-
ment rule for CoulombH factors associated to subquivers.

e MinimalModif[f_J:returns the symmetric Laurent polynomial which coincides
with the Laurent expansion expansion of the symmetric rational function f
at y = 0, up to strictly positive powers of y. Here symmetric means invariant
under y — 1/y. In practice, MinimalModif[f] evaluates the contour integral
in [5], Eq 2.9

2mi (1 — uy)(1 — u/y)
by deforming the contour around 0 into a sum of counters over all poles of
f(u) and zeros of (1 — uy)(1 — u/y). This trick allows to compute (4.1)
even if the order of the pole of f(y) at y = 0 is unknown, which happens if
$QuiverMultiplier is a formal variable.

]{du (1/u—u) f(u) (4.1)

e MinimalModifFast[f_]:returns the symmetric Laurent polynomial which coin-
cides with the Laurent expansion expansion of the symmetric rational func-
tion f at y = 0, up to strictly positive powers of y. This uses the Mathematica
function Residue, assuming that the order of the pole at y = 0 is manifest.

e EvalCoulombH3[Mat_.f]: evaluates any 3-center H factor with multiplicity

vector {1,1, 1} appearing in f. No longer in use.

— 15 —

4.4 Simplifying the result

e SimplifyOmSbasis[f_J:replaces Qs(7,y) — 1 when 7 is a basis vector, unless
$QuiverOmSbasis is set to 0;

e SimplifyOmSbasismult[/_]:replaces Qs(v,y) — 0 when + is a non-trivial mul-
tiple of a basis vector, unless $QuiverOmSbasis is set to 0;

e CoulombHNoLoopToZero[Mat_,f]:sets to zero any H factor in f corresponding
to subquivers without loop, assuming DSZ products «;; = Mat[[i, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

e OmTNoLoopToZero[Mat_,f]:sets to zero any €l factor in f corresponding to
subquivers without loop, assuming DSZ products «;; = Mat[[s, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

e OmSNoLoopToZero[Mat_,f__]:sets to zero any ()g factor in f corresponding to
subquivers without loop, assuming DSZ products «;; = Mat[[s, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

e DropFugacityl[f_]:replaces Qg(vy,y™, t™) by Qs(v,t™) everywhere in f

e SwapFugacity[f_]:replaces Qg(vy,y™) with Qg(~,y™,t™) everywhere in f

4.5 Mutations

The following routines and environment variables were introduced in CoulombHiggs .m
v1.1, to allow investigation of mutations of generalized quivers [22]:

e Mutate[Mat_,k_1: Computes the DSZ matrix of the quiver obtained by ap-
plying a right-mutation with respect to the node k. If k is a list {k;}, then
the right mutations k; are applied successively, starting from the last entry
in k.

e MutateRight[Mat_,Cvec_,Nvec_,k_]: Computes the DSZ matrix, FI parame-
ters and dimension vector of the quiver obtained by applying a right-mutation
with respect to the node k. If k is a list {k;}, then the right mutations k; are
applied successively, starting from the last entry in k. No consistency check
on the FI parameters is performed.

e MutateLeft[Mat_,Cvec_,Nvec_,k_1: Computes the DSZ matrix, FI parame-
ters and dimension vector of the quiver obtained by applying a left-mutation
with respect to the node k. If k is a list {k;}, then the right mutations k; are
applied successively, starting from the last entry in k. No consistency check

on the FI parameters is performed.

e OmStoOmS2[f_]:replaces OmS[gam, v, t| by OmS2|gam, y, t| anywhere in . This is
useful for distinguishing the single-centered invariants of the mutated quiver
from those of the original one.

— 16 —

e MutateRightOmS[Mat_ k_,f J:expresses the single-centered invariants OmS|gam, v, t|
of the original quiver with DSZ matrix Mat in terms of the single-centered in-
variants OmS2[gam, y, t| of the quiver obtained by right-mutation with respect
to node k, using Eq. 1.13 in [22].

e MutateLeftOmS[Mat_,k_ . f]:expresses the single-centered invariants OmS|gam, y, t|
of the original quiver with DSZ matrix Mat in terms of the single-centered
invariants OmS2[gam, y, t| of the quiver obtained by left-mutation with respect
to node k, using Eq. 1.13 in [22].

e MutateRightOmS2[Mat_ k_,f]:expresses the single-centered invariants OmS2[gam, v, t]
a quiver with DSZ matrix Mat in terms of the single-centered invariants
OmS[gam, y, t] of the quiver obtained by right-mutation with respect to node k.
Identical to MutateRight0OmS, except for swapping OmS|gam, y, t| and OmS2|gam, v, t|.

e MutateLefttOmS2[Mat_,k_ I]:expresses the single-centered invariants OmS2[gam, y, t|
a quiver with DSZ matrix Mat in terms of the single-centered invariants
OmS[gam, v, t] of the quiver obtained by right-mutation with respect to node k.
Identical to MutateLeft0mS, except for swapping OmS|gam, v, t| and OmS2|gam, y, t|.

e DropOmSNeg[f_]:equates to 0 any Qg(7,y,t) where the dimension vector asso-
ciated to v has negative components.

e CompareDSZMatrices[Matl_,Mat2_]:gives a list of permutations P such that
Matl = Mat2[[P, P]], or an empty list if no such permutation exists; For
Matl = Mat2, gives the list of automorphisms of the antisymmetric matrix
Mat1.

5. Jeffrey-Kirwan residue formula

Beware: the routine JKIndex appears to have become corrupted due
to changes in v5. Please use JKIndexSplit or revert to v4.

e JKInitialize[Mat_,RMat_,Cvec_,Nvec_]:initializes the internal variables JKFrozenMask,
JKFrozenRuleEuler, JKFrozenRuleRat, JKListu, JKListuAll, JKListuDisplay,
JKListut, Etavec, JKVertexCoordinates, JKVertexLabels. To be run be-

fore JKIndex or JKIndexSplit.

e JKIndex[ChargeMatrix_ Nvec_ Etavec_]:standalone routine, which computes
the x, genus of the GLSM with given charge matrix, dimension vector and
stability parameter. The list of stable flags whose contributions are non-zero
is stored in JKRelevantFlags, and the list of the corresponding contributions
to the x, genus is stored in JKChiGenus.

e JKIndexSplit[ChargeMatrix_,Nvec_,Etavec_,SplitNodes_]:standalone routine,
which computes the x, genus of the GLSM with given charge matrix, dimen-
sion vector and stability parameter, using Cauchy’s formula to split the vector
multiplet determinants associated to the nodes listed in SplitNodes. [16].

— 17 —

5.1 Constructing the integrand and extracting the residue

e ZEuler[ChargeMatrix_,Nvec_]:computes the integrand in the residue formula
for the Euler number

e ZRational[ChargeMatrix_,Nvec_]:constructs the integrand in the residue for-
mula for the x, genus in rational representation

e ZTrig[ChargeMatrix_,Nvec_]:constructs the integrand in the residue formula
for the x, genus in trigonometric representation

e ZE1liptic[ChargeMatrix_,Nvec_]:constructs the integrand in the residue for-
mula for the elliptic genus

e ListPermutationsWithMultiplicity[Nvec_]:computes the list of all multi-
partitions of Nvec, represented by a standard permutation, and their multi-
plicity

ePartitionMultiplicityl[pa_]:computes the multiplicity of a partition in Cauchy-
Bose formula

e ZEulerPartial[ChargeMatrix_ ,Nvec_, ListPerm__]: constructs the partial con-
tribution to the integrand in the residue formula for the index, correspond-
ing to the list of (possibly empty) permutations associated to each node
Listperm.

ZTrigPartiall[ChargeMatrix_,Nvec_, ListPerm_]:constructs the partial con-
tribution to the integrand in the residue formula for the x, genus in trigono-
metric representation, corresponding to the list of (possibly empty) permu-
tations associated to each node Listperm

ZRationalPartial[ChargeMatrix_ Nvec_,ListPerm_]:constructs the partial
contribution to the integrand in the residue formula for the x, genus in ratio-
nal representation, corresponding to the list of (possibly empty) permutations
associated to each node Listperm

ZEllipticPartial[ChargeMatrix_,Nvec_,ListPerm_]:constructs the partial
contribution to the integrand in the residue formula for the elliptic genus in
rational representation, corresponding to the list of (possibly empty) permu-
tations associated to each node Listperm

JKResidueRat[Flags_,f J:extracts the sum of the residues of £ (in rational
representation) at the specified Flags, weighted with sign; the first entry in
Flags is the intersection point, the second is a list of r-plets of charges for

each flag

JKResidueTrig[Flags_,[_]:extracts the sum of the residues of £ (in trigono-
metric representation) at the specified Flags, weighted with sign; the first
entry in Flags is the intersection point, the second is a list of r-plets of

charges for each flag

— 18 —

5.2 Enumerating stable flags

eFindSingularities[ChargeMatrix_]:constructs the list of singular hyperplanes
for the specified charge matrix. Each item is itself a list containing the in-
tersection point and a list of extended charges associated to the hyperplanes
meeting at that point.

eFindIntersection[Sing J]:computes the intersection points of the hyperplanes
listed in Sing; this may include points on the cylinder, which contribute to the
Xy genus but not to the Euler number ! Ultimately, this will be generalized
for the computation of the elliptic genus to include all points on the torus.

e ListHyperplanesIntersectingAt[ListSings_,Inter_]:collects all the hyper-
planes in ListSings which intersect at Inter

e TestProjectivelntersection[ListSings_,Inter_]:tests if the intersection point
Inter of the list of hyperplanes ListSings is projective

e CollectHyperplanes[ListInterrplets_,Inter_]:collects all the hyperplanes from
ListInterrplets, which intersect at the point Inter

e TestStableFlag[ListHyper_,Flag Etavec_]:tests if the flag Flag constructed
out of the hyperplanes in ListHyper is stable with respect to Etavec; returns
sign(det) if it is stable, 0 otherwise.

e FindStableFlags[Inter_, ListSing ,Nvec_,Etavec_]:constructs the list of sta-
ble flags with stability parameter Etavec from the specified list of singular
hyperplanes intersecting at Inter. Each item in the output is a list contain-
ing the intersection point, a list of basis vectors, the reduced charge matrix
and the x matrix.

e SameFlagQ[Q1_,Q2_]:tests if the flags (); and (), (represented by square charge
matrices) are equivalent

e FindStableDomains[Inter_, ListSing ,Nvec_,Etavec_]: Construct all the flags
from the specified list of singular hyperplanes intersecting at Inter, and
compute their stability domain. Each item in the output is a list containing
the intersection point, the ordered hyperplanes defining the flag, and the
stability condition. Unlikethe routine FindStableFlags, no attempt is made
to eliminate equivalent flags.

e FindDegrees[ListSings_,NumSing_]:constructs a list of singularities and their
degree, combining the poles from ListSings with the zeros from the list of
hyperplanes NumSing

— 19 —

5.3 Conversion and visualisation

e FlagToHyperplanes[Flag]:translates the flag Flag, given as r-plet of charge
vectors, into a list of linear combinations of Cartan variables taken from
JKListuDisplay

e PartitionToPermutation[pa_]:translates the partition pa into a standard
permutation

e PermutationToPartition[perm_]:translates the standard permutation perm
into a partition

eDisplayFlaglist[ListFlags_,ListDegrees_]: Displays the list of flags in human-
readable form. The first column gives the intersection point, the second the
list of hyperplanes associated to the basis vectors, the third colum gives
sign(det), the third column gives True if the intersection is projective, False
otherwise; the last column gives the degree of the pole.

eDisplaySingList[ListSings_]:Displays the list of singularities in human-readable
form. The first column gives the intersection point, the second the list of hy-
perplanes intersecting at that point, and the last columns gives True if the
intersection is projective, False otherwise.

e DisplayFlagTree[f_]:Displays the tree associated to flag f, using node po-
sitions and labels defined in JKVertexCoordinates and JKVertexLabels,
which is preset by JKInitialize.

5.4 Constructing charge matrices

e ChargeMatrixFromQuiver[Mat_,RMat_,Nvec_]:constructs the charge matrix
for a quiver with DSZ matrix Mat, R-charge matrix RMat, and dimension
vector Nvec; the last two columns are the R-charge and multiplicity. Do not
forget to set JKFrozenCartan = {{1,1}} to decouple the overall U(1). For
non-quiver gauge theories, ChargeMatrix must be provided by hand.

e FlavoredRMatrix[Mat_ J: Constructs a matrix of R-charges with generic flavor
potentials ;, assuming no oriented closed loop

e AbelianSubQuiver[Mat_,RMat_,Cvec_,Nvec_,perm__]: Constructs the DSZ ma-
trix, R-charge matrix and FI parameters for the Abelian quiver associated to
the list of permutations perm in Hfil 2N,

e CompleteChargeMatrix[ChargeMatrix_,Nvec_]:constructs the extended charge
matrix consisting of chiral multiplets and vector multiplets

e PartialChargeMatrix[ChargeMatrix_,Nvec_,perm_]:constructs the extended
charge matrix consisting of chiral multiplets and vector multiplet contribu-
tions associated to the permutations perm

— 20 —

e CompleteChargeNumMatrix[ChargeMatrix_,Nvec_]:constructs the extended
charge matrix for the numerators, including both chiral multiplets and vector
multiplets

e PartialChargeNumMatrix[ChargeMatrix_,Nvec_,perm__]:constructs the ex-
tended charge matrix for the numerators, consisting of chiral multiplets and
vector multiplet contributions associated to unsplit nodes (in which case the
permutation is empty)

e LegCharge[Nvec_,il_ s1_,i2_ s2_]:constructs a charge vector with 1 in posi-
tion (i1,s1) and —1 in position (ig, S2)

e TrimChargeTable[ChargeMatrix_ J:removes the last two columns and frozen
entries in charge matrix, corresponding to the R-charge and multiplicity.

6. Flow tree formula

e FlowTreeFormula[Mat_,Cvec_,Nvec_]:computes the index of a quiver with
DSZ matrix Mat, stability parameters Cvec and dimension vector Nvec in
terms of attractor indices, using the formula [11, (2.21)]

e FlowTreeFormulaRat[Mat_,Cvec_,Nvec_]:computes the rational index of a
quiver with DSZ matrix Mat, stability parameters Cvec and dimension vector
Nvec in terms of rational attractor indices

e NonAbelianFlowTreeFormula[Mat_,Cvec_,Nvec_]:computes the rational in-
dex of a quiver with DSZ matrix Mat, stability parameters Cvec and di-
mension vector Nvec in terms of rational attractor indices, using the general
(non-necessarily primitive) wall-crossing formula at each wall of marginal sta-
bility.

e ListFirstWalls[Mat_,Cvec_,Nvec_]:gives the list of relevant walls W,, .. for
the non-Abelian flow tree formula for Q(v, 2), as a list of {{v,n},, {vr, "r}}
such that v = nyvy, + ngyr where 7, yr are primitive vectors and np,ng
positive integers.

e TreePoincarePolynomialRat[gam_,y_]:expresses the rational BPS index in
terms of terms of attractor indices and tree index

e TreePoincarePolynomial[gam_,y_]:expresses the BPS index in terms of terms

—_—) —

of attractor indices and tree index

e EvalTreelIndex[Mat_,PMat_,Cvec_.,f_J:evaluates any Treeg[Li,y] appear-
ing in f using TreeIndex with arguments computed from the full DSZ matrix
Mat, its perturbation PMat and the stability parameters Cvec

e TreeIndex[Mat_,PMat_,Cvec_,y_]:computes the tree index by summing all

partial tree indices computed using TreeF

— 21 —

e TreeF[Mat_,Cvec_]:computes the partial tree index by summing over stable
planar trees using PlaneTreeSign

e PlaneTreeSign[Mat_,Cvec_,Li__]:computes the contribution to the partial
tree index from the grouping Li recursively

e TreeFAlt1[Mat_,Cvec_]:computes the partial tree index by summing over
stable planar trees using the first alternative recursion in [11, (2.64)]. Will
be used by TreelIndex if $QuiverOpt is set to 1.

e TreeFAlt1Att[Mat_]J:computes the attractor contribution to the partial tree
index appearing in the first alternative recursion in [11, (2.64)]

e TreeFAlt2[Mat_,Cvec_]:computes the partial tree index by summing over
stable planar trees using the second alternative recursion in [11, (2.64)]. Will
be used by TreeIndex if $QuiverOpt is set to 2.

e TreeFA1t2Att[Mat_]:computes the attractor contribution to the partial tree
index appearing in the second alternative recursion in [11, (2.64)]

e PlaneTreeSplitList[n_]:constructs all splittings of {1,...,n} appearing in
the alternative recursions for the partial tree index

e DSZProdAbelian[Mat_,Lil_,Li2_]:computes the DSZ product for two vectors
labelled by list of vertices

e SubDSZAbelian[Mat_,Li_J:computes the DSZ matrix ~;; for the subquiver
labelled by a list of vertices

e SubFIAbelian[Mat_,Li_]:computes the stability parameters ¢; for the sub-
quiver labelled by a list of vertices (formerly called SubCvecAbelian)

e OmAttToOmAttb[f_]:expresses any ,(v,y) in f in terms of (v, y)’s
e OmAttbToOmAtt[f_]:expresses any Q.(v,y) in f in terms of ., (v,y)’s

e BinarySplits[Nvec_]:gives the list of dimension vectors 7, less than v, quo-
tiented by the equivalence relation v, — v — .

e ToPrimitive[Nvec_]:gives the pair {7/, d} such that +' is primitive, d > 1 and
v =dy.

— 9292 —

7. Attractor Tree formula

with DSZ matrix Mat, stability parameters Cvec and dimension vector Nvec
in terms of attractor indices.

e AttractorTreeFormula[Mat_,Cvec_ Nvec_]:computes the index of a quiver

e AttractorTreeFormulaRat[Mat_,Cvec_,Nvec_]:computes the rational index
of a quiver with DSZ matrix Mat, stability parameters Cvec and dimension
vector Nvec in terms of rational attractor indices

e AttractorIndex[Mat_,Cvec_,y_]:evaluates the Attractor index ggen({aq, -
ant; {c1, - en},y) with DSZ products «;; = Mat[[i, j]], possibly rescaled by
an overall factor of $QuiverMultiplier, FI terms ¢; = Cvec|[i]], angular
momentum fugacity y, as a sum over rooted trees with valency greater or

equal to 3.

e EvalAttractorIndex[Mat_,Cvec_,f_

in £ as AttractorIndex|Mat2, Cvec2,y|, where Mat2, Cvec2 are computed
from the list of vectors Li and the quiver data Mat, Cvec.

l:evaluates any Treeg|Li,y| appearing

e AttractorF[Li_,Mat_,Cvec_]:computes the partial Attractor index by sum-
ming over Attractor trees; the first argument supplies the list of vertices in
each Attractor tree, constructed once and for all by AttractorIndex using
AttractorTreeVertices.

e Attractorg[Mat_,Cvec_]:computes the sign factor assigned to a given vertex
in a Attractor tree, using the prescription from [13, (3.23)], (sign(0))™ —
1/(m+ 1) if m is even, or zero if m is odd. If second argument missing, uses
attractor stability condition instead.

e AttractorTreeList[n_]:constructs the list of rooted planar trees with valency
greater or equal to 3, as a list of groupings (parenthesizings) of {1,...,n}.

e AttractorTreeVertices[t_]:For a given Attractor tree represented as a group-
ing t of the list {1,...,n}, constructs the list of {vertex, {children}}, with
the last one in the list being for the root vertex.

e AttractorTreeTriples[t_]:For a given Attractor tree represented as a group-
ing t of the list {1, ..., n}, constructs the list of {leftvertex, rightvertex, parent}.
Used by AttractorTreeVertices to construct the list of vertices.

e OmAttNoLoopToZero[Mat_,f J:sets to zero any (2, factor in f corresponding
to subquivers without loop, assuming DSZ products «;; = Mat|[[i, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

e SimplifyOmAttbasis[f_]:replaces Q.(7,y) — 1 when ~ is a basis vector, and
Q. (v,y) — 01is ~ is a multiple of a basis vector;

— 923 —

8. Joyce formula

The Joyce formula relates rational invariants for two stability conditions:

Q(’y, Cor), t) _ Z gJoyce|(i?11}{a$¥|C27 y) H Q(%, 1y, t) (81)
Y=2T1 Y ’ =1

where

(=1

gJoyce({lyi}a Cl; C27 y) = W

Z (—y)ZKj <7"<i)%(j)>U({’Ya(i)}a i, C2)
oESy

(8.2)
The extent of the validity of this formula, beyond the simple wall-crossing case
considered in [3], is not yet clear to the author.

e JoyceFormula[Mat_,Cvecl_,Cvec2_,f_1: replaces all Q(7,y) and Giges(7, y)

in f, all assumed to refer to stability Cvecl, with their corresponding values
at Cvec2, using the formula (8.1) or its analogue for stack invariants (formerly
called JoyceSongFormula);

e JoyceIndex[Mat_,Li_,Cvecl_,Cvec2_,y_]:computes the index gjopce({7i }, C1, (2)
defined in (8.2).

e UFactor[Li_,Cvecl_,Cvec2_]:computes the factor U({v;}, (1, (2) defined in [7,
§4], using stability condition defined by Slope

e SFactor[Li_,Cvecl_,Cvec2_]:computes the factor S({~;}, (1, (2) defined in [7,
§4], using stability condition defined by Slope
e LFactor[Mat_,Li_,y_]:computes the factor £({7;}) defined in [3, (5.4)]

e JoyceIndexAlt[Mat_,Li_,Cvecl_,Cvec2_,y_]1:computes the index gyoyce({7i}, C1, (2, ¥)
defined using the naive extension of [3, (5.5)] to y # 1

e Slope[Nvec_, Cvec_]:computes the slope > N;(.

e PartitionToInvervals[pa_]:maps an ordered integer partition of N into a

set 0 <ay; <--- < a, =N such that (a;_; +1,...,qa;) label the j-th part.

e CodeToLabeledTreeAlt[li_]:constructs the labelled tree with Priifer code 11,
substitute for CodeToLabeledTree in Combinatorica package

e DTSpectrumFromOmAtt[Mat_,Cvec_,Nvec_]J:computes all rational invariants
with dimension vector less or equal to Nvec; the result is a list of replacement

rules {Omb[gam y, :> Q(v, ¢, y)}

e TrivialStackInvariant[Mat_,Cvec_,Nvec_]:computes the stack invariant
Giggs (7,0, y,t) for dimension vector v = Nvec and trivial stability condi-
tion, in terms of the rational invariants Q(«;, ¢, y) for stability ¢ = Cvec

: : , . 2 1 N; Y
e GaugeMotive[Nvec_,y_J]:computes the motive []; <y2N22 [[2(1—y 23)) of
the gauge group [[, GL(N;, C)

— 24 —

9. Non-commutative Donaldson-Thomas invariants

e NCDTSeriesFromOmS[Mat_, Framing , Nmin_,Nmax_]:constructs the gener-
ating function of NCDT invariants for the quiver with DSZ matrix Mat and
framing Framing using the Coulomb branch formula, for dimension vectors
with height from Nmin up to NMax.

e NCDTSeriesFromOmAtt[Mat_, Framing , Nmin_,Nmax_]:constructs the gen-
erating function of NCDT invariants for the quiver with DSZ matrix Mat and
framing Framing using the Flow Tree formula, for dimension vectors with
height from Nmin up to NMax.

e NCDTSeriesFromCrystallhMat_, Framing ,Nmax_]:constructs the generat-
ing function of NCDT invariants for the quiver with height matrix hMat and
framing Framing using the Quiver Yangian algorithm, for dimension vectors
with height up to NMax.

e FramedDSZ[Mat_, Framing_]:starting from a quiver with DSZ matrix Mat, con-
structs the DSZ matrix of the framed quiver with f; arrows from the framing
node (labelled 0) to the node i.

e FramedFI[Nvec_]:constructs a random FI parameter for a framed quiver with
dimension vector [1;Nvec], with first entry much larger than the other ones.

e BondFactor[hMat_,i_,j_,z_]:evaluates the bond factor ¢=7(z) in the nota-
tions of [15], where hMat is a matrix whose (4, j)-entry is the list of heights of
the arrows from node 7 to node j. The heights are in turn linear combinations
of parameters hy, hs, hs.

e ChargeFunction[hMat_,Framing , Crys_, i_, z_]:constructs the charge func-

tion W.(z) for the molten crystal C = Crys in the notations of [15]. The
crystal C is encoded in a list of {color, height} for each atom.

e VacuumChargeFunction[Framing ,i_, z_]:provides the charge function \%(z) =
1 + f;/z for the full crystal, where f; is the i-th entry of Framing. Can be
redefined to accommodate non-standard vacuum charge functions.

e AddToCrystall[hMat_, Framing ,i_, Crys_]: Starting from the molten crystal
Crys, apply the Quiver Yangian algorithm to construct the list of molten
crystals with one additional atom of color 3.

e GrowCrystalList[hMat_, Framing , CrysList_]: starting from the list of
molten crystals CrysList, apply the Quiver Yangian algorithm to construct
the larger list of molten crystals with up to one additional atom of any color.

e CrystalDim[r_,Crys_J]:computes the dimension vector of the crystal Crys,
assuming that the colors can take values 1 up to r.

e EulerNorm[hMat_ Nvec_]: Computes the Ringel-Tits norm of the dimension
vector Nvec from the matrix hMat

— 925 —

e PlotTiling[hMat_ N v_, Range_,Shor_,Perf_]:produces a 2D plot of the
brane tiling defined by the matrix hMat, by iterating the arrows Nn times,
removing those which belong to the perfect matching Perf. The argument v
should be a list of 2D vectors {v1,v2} determining the vector v associated to
an arrow with weight x1h; + x2ho + x3h3, according to v = x1v1 + xovy. The
plot range is set to Range and arrows are shortened by Shor. If the argument
Perf is omitted, all arrows are included. The vertices are labelled from 1 to
K, unless specified by $QuiverVertexLabels

—)

4

—)

e PlotTiling3D[hMat_,Nn_, Range_,Perf_]:produces a 3D plot of the
Calabi-Yau crystal defined by the matrix hMat, by iterating the arrows Nn
times, removing those which belong to the perfect matching Perf. The ar-
gument v should be a list of 3D vectors {v1,v2,v3} determining the vec-
tor v associated to an arrow with weight x1hy + x2ho + z3h3, according to
v = 2101 + Tovy + z3v3. The plot range is set to Range. If the argument Perf
is omitted, all arrows are included.

e PlotToricFan[Fan_]:produces a produces a 2D plot of the polygon with ver-
tices listed in Fan

e ListPerfectMatchings[Wp_, Wm_]:produces the list of cuts for the potential
W =W, —W_ = Wp — Wm; each term in W, must be a sum of monomials
in Phi[i, j, k| with unit coefficient; each perfect matching is represented by a
list of triplets {i, j, k} such that W is linear in each Phili, j, k]

e ListKnownBraneTilings[]:lists the names of brane tilings already coded in the
package. The data for each can be extracted from the corresponding item in
the global variable BraneTilingsData

eHeightMatrixToDSZ[hMat_]:computes the DSZ matrix associated to the height
matrix hMat

eHeightMatrixFromPotential[Wp_ Wm_ {il_jl1_ ki_}, {i2_,j2_ k2_}]:construct
the matrix of heights hMat such that the arrow ®' . has height h;,the arrow

11,71

<I>f227j2 has height hy and all monomials in the potential W = Wp — Wm have
height hs

10. Utilities

e PlotQuiver[Mat_]:Displays the quiver with DSZ matrix Mat. If the entries in
Mat are lists of integers, then Mat is interpreted as the height matrix and the
quiver is drawn accordingly. The vertices are labelled from 1 to K, unless
specified by $QuiverVertexLabels

e QuiverPlot[Mat_]: Displays the quiver with DSZ matrix Mat (obsolete).

— 26 —

e UnitStepWarn[x_J:gives 1 for x > 0, 0 for z < 0, and 1/2 if x = 0. Produces
a warning in this latter case, irrespective of the value of $QuiverVerbose. If
so, the user is advised to run the computation again with a different random
perturbation. For efficiency, this instruction is no longer used in v2.1, however
a warning is still issued if one encounters a Heaviside function with zero
argument in the evaluation of the Coulomb indices.

e GrassmannianPoincarelk ,n_,y_]:computes the Poincaré polynomial of the
Grassmannian G(k,n) via Eq. (6.22) in [5].

e CyclicQuiverOmS[avec_,t_]:computes the single-centered index Qg(v1, - .., V)
associated to a cyclic Abelian quivers with DSZ matrix o j41 = avec[[i, i+1]]
via Eq (4.29) in [5].

e CyclicQuiverDSZ[avec_,t_]:constructs the DSZ matrix for a cyclic quiver with
a; arrows from node ¢ to node 7 + 1.

e FIFromZ[Nvec_,Zvec_]:computes the FI parameters {(;} from the vector of
central charges Zvec = {Z;} and dimension vector Nvec = {N;} via (; =
S(e™®Z;), where ¢ is the argument of > . N;Z;. The parameters (; are
rounded up to the nearest rational number with denominator less than $QuiverPerturbi.

e AttractorFI[Mat_,Nvec_]:gives the attractor point (= — Zj Yi; ;.
e (DeformedFactorialln_,y_]:gives the g-deformed factorial [n, y]!
e EvalQFact[f_]:evaluates any QFact [n,y] appearing in f

e ExpandThetalf]:replaces Theta and Eta by their g-expansions, truncated at
order $QuiverMaxPower

e gSeries[f_]:Replaces T by log ¢/(27i), and Taylor expand around ¢ = 0 up to
order $QuiverMaxPower

e SubVectors[Nvec_]:List all positive dimension vectors which are strictly less
than Nvec.

e EulerForm[Mat_]:construct the antisymmetric Ringel-Tits form from the in-
tersection matrix Mat (coincides with the latter if Mat is antisymmetric).

e ListLoopRCharges[Mat_,RMat_]:Lists the oriented closed loops and corre-
sponding R-charge.

e TestNoLoop[Mat_,Li_]:tests if the subquiver associated to the charge vectors
Li has oriented closed loops.

e RandomDSZWithNoLoop[n_,kmax_]:generates a random antisymmetric n x n
matrix with off-diagonal entries less than kmax in absolute value, ensuring
that the quiver has no loop

— 27 —

e RandomDSZWithLoop[n_,kmax_]:generates a random antisymmetric n X n ma-
trix with off-diagonal entries less than kmax in absolute value, ensuring that
the quiver has at least one loop

e RandomFI[Nvec_]:generates a random set of FI parameters (; between -1 and
1, such that) ¢; Nvec|[[i]] = 0; (previously called RandomCvec)

e FastResiduell ,{ x_, xO_ }]J:computes the residue of f at z = x.
e DSZProd[Mat_,Nvecl_, Nvec2_]:computes the Dirac product) a;; N} N7.

e ReduceDSZMatrix[Mat_,Li_]:sets Mat[[i, j]] = Mat[[j,¢]] = 0 for all elements
{i,7} in Li, and returns the resulting matrix. If i = j, then the i-th row and
column of Mat are set to 0.

e HiggsedDSZ[Mat_,i_,j_]:starting from a quiver with DSZ matrix Mat, con-
structs the DSZ matrix of the quiver where the node j has been merged with
the node 1.

e ConnectedQuiverQ[Mat_,Nvec_]:returns True is the restriction of the quiver
with DSZ matrix Mat to the nodes where Nvec has non-trivial support is
connected.

e PlethysticExplf_,Nmax_]:computes the plethystic exponential of f, assum-
ing that it is a function of x[i] and y only, keeping the first Nmax terms in the
sum.

e PlethysticLoglf ,Nmax_]:computes the plethystic logarythm of f, assuming
that it is a function of x[i] and y only, keeping the first Nmax terms in the
sum.

e QuiverMultiplierMat[i_,j_]:Returns $QuiverMultiplier if it is a scalar, or
$QuiverMultiplier([i, j]] if $QuiverMultiplier is a matrix.

References

[1] J. Manschot, B. Pioline, and A. Sen, “On the Coulomb and Higgs branch
formulae for multi-centered black holes and quiver invariants,” JHEP 05 (2013)
166, 1302.5498.

[2] M. Reineke, “The Harder-Narasimhan system in quantum groups and
cohomology of quiver moduli.,” Invent. Math. 152 (2003), no. 2, 349-368.

[3] J. Manschot, B. Pioline, and A. Sen, “Wall Crossing from Boltzmann Black Hole
Halos,” JHEP 1107 (2011) 059, 1011.1258.

[4] J. Manschot, B. Pioline, and A. Sen, “A Fixed point formula for the index of
multi-centered N=2 black holes,” JHEP 1105 (2011) 057, 1103.1887.

— 28 —

http://www.arXiv.org/abs/1302.5498
http://www.arXiv.org/abs/1011.1258
http://www.arXiv.org/abs/1103.1887

[5] J. Manschot, B. Pioline, and A. Sen, “From Black Holes to Quivers,” JHEP
1211 (2012) 023, 1207 .2230.

[6] J. Manschot, B. Pioline, and A. Sen, “The Coulomb Branch Formula for Quiver
Moduli Spaces,” Confluentes Mathematici 2 (2017) 49-69, 1404 .7154.

[7] D. Joyce, “Configurations in abelian categories. iv. invariants and changing
stability conditions,” Advances in Mathematics 217 (2008), no. 1, 125-204.

[8] K. Hori, H. Kim, and P. Yi, “Witten Index and Wall Crossing,” JHEP 01 (2015)
124, 1407 .2567.

[9] C. Cordova and S.-H. Shao, “An Index Formula for Supersymmetric Quantum
Mechanics,” 1406.7853.

[10] F. Benini, R. Eager, K. Hori, and Y. Tachikawa, “Elliptic Genera of 2d N = 2
Gauge Theories,” Commun. Math. Phys. 333 (2015), no. 3, 1241-1286,
1308.4896.

[11] S. Alexandrov and B. Pioline, “Attractor flow trees, BPS indices and quivers,”
Adv. Theor. Math. Phys. 23 (2019), no. 3, 627-699, 1804.06928.

[12] S. Mozgovoy and B. Pioline, “Attractor invariants, brane tilings and molten
crystals.”

[13] S. Alexandrov, J. Manschot, and B. Pioline, “S-duality and refined BPS indices,”
Commun. Math. Phys. 380 (2020), no. 2, 755-810, 1910.03098.

[14] B. Pioline, “in progress.”

[15] W. Li and M. Yamazaki, “Quiver Yangian from Crystal Melting,” JHEP 11
(2020) 035, 2003.08909.

[16] G. Beaujard, S. Mondal, and B. Pioline, “Quiver indices and Abelianization from
Jeffrey-Kirwan residues,” JHEP 10 (2019) 184, 1907.01354.

[17] C. Cordova and A. Neitzke, “Line Defects, Tropicalization, and Multi-Centered
Quiver Quantum Mechanics,” JHEP 09 (2014) 099, 1308.6829.

[18] N. Gaddam, “Elliptic genera from multi-centers,” JHEP 05 (2016) 076,
1603.01724.

[19] I. Messamah and D. Van den Bleeken, “Pure-Higgs states from the
Lefschetz-Sommese theorem,” JHEP 11 (2020) 161, 2008.05432.

[20] Z. Duan, D. Ghim, and P. Yi, “5D BPS Quivers and KK Towers,” 2011.04661.

[21] S. Banerjee, P. Longhi, and M. Romo, “Exponential BPS graphs and D-brane
counting on toric Calabi-Yau threefolds: Part II,” 2012.09769.

[22] J. Manschot, B. Pioline, and A. Sen, “Generalized quiver mutations and
single-centered indices,” JHEP 01 (2014) 050, 1309.7053.

— 29 —

http://www.arXiv.org/abs/1207.2230
http://www.arXiv.org/abs/1404.7154
http://www.arXiv.org/abs/1407.2567
http://www.arXiv.org/abs/1406.7853
http://www.arXiv.org/abs/1308.4896
http://www.arXiv.org/abs/1804.06928
http://www.arXiv.org/abs/1910.03098
http://www.arXiv.org/abs/2003.08909
http://www.arXiv.org/abs/1907.01354
http://www.arXiv.org/abs/1308.6829
http://www.arXiv.org/abs/1603.01724
http://www.arXiv.org/abs/2008.05432
http://www.arXiv.org/abs/2011.04661
http://www.arXiv.org/abs/2012.09769
http://www.arXiv.org/abs/1309.7053

