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Temperature
Statistical mechanics definition
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tr( )

ε=ct

• Isolated system⇒ conserved energy E
• Ergodic hypothesis

S = kB lnN β ≡ 1

kBT
=
∂S

∂E

∣∣∣∣
E

Microcanonical definition

E = Esyst + Eenv + Eint
Neglect Eint (short-range int.)

Esyst � Eenv
peq(Esyst) = g(Esyst)e−βEsyst/Z
Canonical ensemble

Environment

System

Interaction
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Properties & measurement
Connection with thermodynamics

— Relation to entropy.

— Control of heat-flows : ∆Q follows ∆T .

— Partial equilibration – transitivity :

TA = TB , TB = TC ⇒ TA = TC .

thermometers for systems in

good thermal contact (∆Q)

Whatever we identify with a temperature should have these properties
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In and out of equilibrium
Take a mechanical point of view and call {~ri}(t) the variables

e.g. the particles’ coordinates {~xi(t)} and momenta {~pi(t)}

Choose an initial condition {~ri}(0) and let the system evolve.

timet=0 t t=dt+t w w

preparation

   time

waiting 

   time

measuring

   time

0 τ

• For tw > teq : {~ri}(t) reach the equilibrium pdf and thermodynamics and

statistical mechanics apply. Temperature is a well-defined concept.

• For tw < teq : the system remains out of equilibrium and thermodynamics

and (Boltzmann) statistical mechanics do not apply.

Is there a quantity to be associated with a temperature?
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Dynamics in equilibrium
Conditions

Take an open system coupled to an

environment

Environment

System

Interaction

Necessary :

— The bath should be in equilibrium

same origin of noise and friction.

— Deterministic force :
conservative forces only, ~F = −~∇V .

— Either the initial condition is taken from the equilibrium pdf, or the

latter should be reached after an equilibration time teq :

Peq(v, x) ∝ e−β(mv
2

2
+V )
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Two-time observables
Correlations

timet=0 t t=dt+t w w

preparation

   time

waiting 

   time

measuring

   time

0 τ
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r(tw)

tr( )

tw not necessarily longer than teq.

The two-time correlation between A[~x(t)] and B[~x(tw)] is

CAB(t, tw) ≡ 〈A[~x(t)]B[~x(tw)] 〉

average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise in Langevin dynamics, etc.)
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Two-time observables
Linear response
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The perturbation couples linearly to the observable B[~x(tw)]

E → E − hB[~x(tw)]

The linear instantaneous response of another observable A[~x(t)] is

RAB(t, tw) ≡ δ〈A[~x(t)]〉h
δh(tw)

∣∣∣∣
h=0

The linear integrated response is χAB(t, tw) ≡
∫ t

tw

dt′RAB(t, t′)
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Fluctuation-dissipation
In equilibrium

P (~r, tw) = Peq(~r)

• The dynamics are stationary

CAB → CAB(t− tw) and RAB → RAB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (CAB) and

induced (RAB) fluctuations

RAB(t− tw) = − 1

kBT

∂CAB(t− tw)

∂t
θ(t− tw)

holds and implies (kB = 1 henceforth)

χAB(t− tw) ≡
∫ t

tw

dt′RAB(t, t′) =
1

T
[CAB(0)− CAB(t− tw)]
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Fluctuation-dissipation
Linear relation between χ and C

P (~r, tw) = Peq(~r)

• The dynamics are stationary

CAB → CAB(t− tw) and RAB → RAB(t− tw)

• The fluctuation-dissipation theorem between spontaneous (CAB) and

induced (RAB) fluctuations

RAB(t− tw) = − 1

kBT

∂CAB(t− tw)

∂t
θ(t− tw)

holds and implies (kB = 1 henceforth)

χAB(t− tw) ≡
∫ t

tw

dt′RAB(t, t′) =
1

T
[CAB(0)− CAB(t− tw)]
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Fluctuation-dissipation
Solvable glasses: p spin-models & mode-coupling theory

• Stochastic dynamics of a particle in an infinite dimensional space under the

effect of a quenched random potential.

• A fully-connected (Curie approximation) spin model with as many ferroma-

gnetic as antiferromagnetic couplings.

1e+00

1e-01

1e-02
1e+051e+031e+011e-01

C

t-tw

rapid & stationary (C st )

aging &
slow
(Cag)

q ea

t
α

1e+00

1e-01
1e+051e+031e+011e-01

χ

t-tw

rapid & stationary (χ st)

aging & slow (χag)

χ
ea

Sketch of the separation of time-scales in the out of equilibrium relaxation
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Fluctuation-dissipation
Solvable glasses: p spin-models & mode-coupling theory

A quench from T0 →∞ (gas) to T < Tg (glass)

Parametric construction

tw fixed

tw1 < tw2 < tw3

t : tw →∞ or

τ ≡ t− tw : 0→∞
used as a parameter

Note that T ∗ > T

LFC & Kurchan 93
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Fluctuation-dissipation
Proposal

For non-equilibrium systems, relaxing slowly towards an asymptotic limit (cfr.

threshold in p spin models) such that one-time quantities [e.g. the energy-

density E(t)] approach a finite value

lim
tw→∞

C(t,tw)=C

χ(t, tw) = fχ (C)

For weakly forced non-equilibrium systems in the limit of small work

lim
ε→0

C(t,tw)=C

χ(t, tw) = fχ (C)

And the effective temperature is − 1

Teff

≡ ∂χ

∂C
LFC & Kurchan 94
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A short-time regime with FDT?
A general property proven by a bound for Langeving dynamics

|χ(t, tw)− C(t, t) + C(t, tw)| ≤ K

(
− 1

N

dH(tw)

dtw

)1/2

with the “H-function”

H(tw) =
∫
d~xd~v P (~x,~v, tw) [kBT lnP (~x,~v, tw) +H(~x,~v)]

and its time variation dH(tw)
dtw

= −〈~f(tw) · ~v(tw)〉 −
∑

i gi(tw)

where the first term is the work done by eventual non-potential forces ~f

and the second term is a sum of positive terms

gi(tw) = γ0

∫
d~xd~v

(mviP+T∂viP )2

m2P
≥ 0

LFC, Dean & Kurchan 97
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FDT & effective temperatures
Can one interpret the slope as a temperature?
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 c
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Observable A

’

’

Thermometer

(coordinate x)

Coupling constant k

Thermal bath (temperature T)

A A A A

.   .   .

α=1 α=3 α=Μ

x

α=2

(1) Measurement with a thermometer with

• Short internal time scale τ0, fast dynamics is tested and T is recorded.

• Long internal time scale τ0, slow dynamics is tested and T ∗ is recorded.

(2) Partial equilibration (3) Direction of heat-flow

LFC, Kurchan & Peliti 97
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Glassy dynamics
Non stationary relaxation & separation of time-scales

Density-density correlation density response
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t

tw
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Correlation Time-integrated linear response

Analytic solution to a mean-field model LFC & J. Kurchan 93
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Glassy dynamics
Fluctuation-dissipation relation: parametric plot
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FDT & effective temperatures
Sheared binary Lennard-Jones mixture

Left: the kinetic energy of a tracer particle (the thermometer) as a function

of its mass (τ0 ∝
√
mtr)

1
2
mtr〈v2

z〉 = 1
2
kBTeff

Right: χk(Ck) plot for different wave-vectors k, partial equilibrations.

J-L Barrat & Berthier 00
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FDT & effective temperatures
Role of initial conditions

T ∗ > T found for quenches from the disordered into the glassy phase

(Inverse) quench from an ordered initial state, T ∗ < T

2d XY model or O(2) field theory Binary Lennard-Jones mixture

Berthier, Holdsworth & Sellitto 01 Gnan, Maggi, Parisi & Sciortino 13
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Fluctuations
All subregions in space tend to have the temperature

in the same time-scale, e.g. Cr < qea

Simulations
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Teff & FTs
Driving glassy systems

A harmonic and an unharmonic oscillator driven out of equilibrium

by two baths with different time-scales and temperatures.
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Ratchets
Asymmetric particle immersed in an ageing glass

〈∆x0(t)〉 ≡ 〈x0(t)− x0(0)〉

2 2.5

log
1/2

(t)

0
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0.04

<
∆

x
0
(t

)>

asym. equil.

asym. aging

symm. aging ~ log
1/2

(t)

Gradenigo, Sarracino, Villamaina, Grigera, Puglisi 10
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Ratchets
Asymmetric particle immersed in an ageing glass
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Gradenigo, Sarracino, Villamaina, Grigera, Puglisi 10
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FDT & FTs
Fluctuations ∆s = s(t)− s(tw) in ROM model

Crisanti, Picco & Ritort 13
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Experiments
Ageing glycerol

Grigera & Israeloff 99
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Experiments
Beads and hairpins

Dietrich et al 15
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Experiments
Beads and hairpins

Dietrich et al 15
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Closed classical system
p = 2 spherical model *** preliminary ***

Foini, LFC, Gambassi, Konik 16-17

LFC, Lozano, Nessi, Picco & Tartaglia
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Dissipative quantum glasses
Quantum p-spin coupled to a bath of harmonic oscillators

C

R

τ

χ

C

Out of equilibrium decoherence

LFC & Lozano 98
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Isolated quantum systems
Quantum quenches

• Take an isolated quantum system with Hamiltonian H0

• Initialize it in, say, |ψ0〉 the ground-state of H0.

• Unitary time-evolution with U = e−
i
~Ht with a Hamiltonian H .

Does the system reach some steady state?

Note that it is the ergodic theory question posed in the quantum context.

Motivated by cold-atom experiments & exact solutions of 1d quantum

models.

Are at least some observables described by thermal ones?

When, how, which?
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Quantum quench
Setting

Take a closed system, H0, in a given state, |ψ0〉, and suddenly change

a parameter, H . The unitary evolution is ruled by H .

e.g. H =

∫
ddx

{1

2
π2 +

1

2
(~∇φ)2 + rφ2 + λφ4

}

λ0 → λ
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Quantum quench
Setting

Take a closed system, H0, in a given state, |ψ0〉, and suddenly change

a parameter, H . The unitary evolution is ruled by H .

e.g. H =

∫
ddx

{1

2
π2 +

1

2
(~∇φ)2 + rφ2 + λφ4

}

r > 0 → r < 0
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Quantum quenches
Questions

Does the system reach a thermal equilibrium density matrix?

Under which conditions?

non-integrable vs integrable systems ; role of initial states ; non critical vs. critical

quenches

• Definition of Te from 〈ψ0|H|ψ0〉 = 〈H〉Te = Tr He−βeH

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ 〈ψ0|φ(~x, t)φ(~y, t)|ψ0〉 vs. C(r) ≡ 〈φ(~x)φ(~y)〉Te .

Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

Proposal : put qFDT to the test to check whether Teff = Te exists
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Fluctuation-dissipation theorem

Classical dynamics in equilibrium

The classical FDT for a stationary system with τ ≡ t− tw reads

χ(τ) =

∫ τ

0

dt′ R(t′) = −β[C(τ)− C(0)] = β[1− C(τ)]

choosing C(0) = 1.
Linear relation between χ and C

Quantum dynamics in equilibrium

The quantum FDT reads

χ(τ) =

∫ τ

0

dτ ′ R(τ ′) =

∫ τ

0

dτ ′
∫ ∞
−∞

idω

π~
e−iωτ

′
tanh

(
β~ω

2

)
C(ω)

Complicated relation between χ and C
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Fluctuation-dissipation theorem
Quantum SU(2) Ising chain

The initial Hamiltonian HΓ0 = −
∑
i

σxi σ
x
i+1 + Γ0

∑
i

σzi

The initial state |ψ0〉 ground state of HΓ0

Instantaneous quench in the transverse field Γ0 → Γ

Evolution with HΓ.
Iglói & Rieger 00

Reviews : Karevski 06 ; Polkovnikov et al. 10 ; Dziarmaga 10

Observables : correlation and linear response of local longitudinal and

transverse spin, etc.

Specially interesting case Γc = 1 the critical point. Rossini et al. 09
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Quantum quench
Teff from FDT? Longitudinal spin
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-0.25

0
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Insets

e−τ/τC

τ−2 sin(4τ + φ)

Cx(τ) ' ACe−τ/τC [1− aCτ−2 sin(4τ + φC)]

Rx(τ) ' ARe−τ/τR [1− aRτ−2 sin(4τ + φR)]

Foini, LFC & Gambassi 11
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Quantum quench
Teff from FDT ?

For sufficiently long-times such that one drops the power-law correction

−βxeff '
Rx(τ)

dτCx
+(τ)

' −τCAR
AC

A constant consistent with a classical limit but

T xeff(Γ0) 6= Te(Γ0)

Morever, a complete study in the full time and frequency domains confirms

that T xeff(Γ0, ω) 6= T zeff(Γ0, ω) 6= Te(Γ0) (though the values are close).

Fluctuation-dissipation relations as a probe to test thermal equilibration

No equilibration for generic Γ0 in the quantum Ising chain
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Summary
Teff from FDT

• Analysis of fluctuation-dissipation relations in closed or open clas-

sical and quantum systems.

• Teff calculated for dissipative classical and quantum mean-field mo-

dels – largeN , large d or with self-consistent closure approximations.

A finite dimensional solvable model with the phenomenology discus-

sed is missing. (This is probably the same as finding a solvable glass)

• Discussion of the thermodynamic meaning of Teff .

• A better understanding of the microscopic origin of Teff is lacking.

• Use of fluctuation-dissipation relations to check for Boltzmann equi-

librium (application to quantum quenches).
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Fluctuation-dissipation
A proof

The generic Langevin equation for a particle in 1d is

mẍ(t) +M ′[x(t)]

∫ t

−T
dt′ Γ(t− t′)M ′[x(t′)]ẋ(t′) = F (t) + ξ(t)M ′[x(t)]

with the coloured noise 〈ξ(t)ξ(t′)〉 = T Γ(t− t′)

The dynamic generating functional is a path-integral

Zdyn[η] =

∫
dx−T dẋ−T

∫
DxDix̂ e−S[x,ix̂;η]

with ix̂(t) the ‘response’ variable.

x−T and ẋ−T are the initial conditions at time−T .

Martin-Siggia-Rose-Jenssen-deDominicis formalism
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Fluctuation-dissipation
A proof

The action has a deterministic part (Newton) that includes the initial

condition and a dissipative part that depends upon Γ : S = Sdet + Sdiss

The transformation

x(t)→ x(−t) ix̂(t)→ ix̂(−t) + βẋ(−t)

leaves Sdiss and the path-integral measure invariant.

Sdet is also invariant if P (x−T , ẋ−T ) = Peq(x−T , ẋ−T ), and F = V ′[x]

The FDT valid for Newton or Langevin dynamics

RAB(t, tw) +RAB(tw, t) = β∂twCAB(t, tw)

and higher-order extensions are Ward identities of this symmetry.

The fluctuation theorems can also be proven in this way.
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Fluctuation theorems

Take a system in equilibrium and drive it into a

non-equilibrium steady state

with a perturbing force. The fluctuations of ‘entropy production rate’

p ≡ (τσ+)−1
∫ τ/2
−τ/2 dt W (St)/T

where St is the trajectory of the system in phase space,

T is the temperature of the equilibrated unperturbed system,

W (St) is the work done by the external forces, and

Tσ+ ≡
∫
dxPst(x)W (x) ∼ limτ→∞

1
τ

∫ τ/s
−τ/s dt W (t) is an

average over the steady state distribution, satisfy

ξ(p) − ξ(−p) = pσ+ with ξ(p) ≡ limτ→∞
1
τ

lnπτ (p)

and πτ the probability density of p.

Cohen, Morriss & Evans 90 ; Gallavoti & Cohen 93
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Fluctuation theorems

Take a glass out of equilibrium and take it into a

driven steady glassy state

with a perturbing force.

For which entropy production rate does a fluctuation theorem hold?

Since there is no meaning to T but there is to Teff the proposal is to
replace ∫ τ/2

−τ/2 dt
W (t)
T

→
∫ τ/2
−τ/2 dt

W (t)
Teff(t)

with Teff(t) the effective temperature as measured from

the fluctuation-dissipation relation of the unperturbed relaxing system

with its two values T and T ∗

Zamponi, Bonetto, LFC & Kurchan 05
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IsTeff related to an entropy?
Configurational entropy

An exponentially large number of metastable states is reached dynamically

Free−energy

Metastable states

Equilibrium

Finite barriers

Threshold level

Diverging barriers with N

N dim.( ) Order parameters

Curie-Weiss (ferro) Sketch of free-energy landscape

Threshold level is reached asymptotically

e.g. limtw→∞ E(t) = E∞ > Eeq.
Well-understood in mean-field models with the

Thouless-Anderson-Palmer technique
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IsTeff related to an entropy?
Configurational entropy

Σ(f) = kB lnN (f) ⇒ 1

kBT ∗
=
∂Σ(f)

∂f

∣∣∣∣
f∞

NB fmax 6= f∞⇒ failure of ‘maximum entropy principles’.

Edwards & Oakshott 89, Monasson 95, Nieuwenhuizen 98

Very sketchy view : many amorphous solid configurations (Σ⇔ T ∗) and

vibrations around them (f ⇔ T ).
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Quantum quench
Teff from FDT? Longitudinal spin

A quantum quench Γ0 → Γ of the isolated Ising chain

Here : to its critical point Γ = 1
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Foini, LFC & Gambassi 11
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Summary

• Teff definition from the analysis of fluctuation-dissipation relations.

• Discussion of thermodynamic meaning.

Shown for mean-field models – large N , large d or, in other words,

within the mode-coupling approach to glassy systems.

•Numerical evidence Lennard-Jones silica, soft particles ; vortex glasses

granular matter ; thin magnetic films, active matter, etc.

• Other evidence : extended Arrhenius law for activation (Ilg & J-L Barrat),

fluctuation theorems (Zamponi et al), ratchets (Gradenigo et al), etc.

• Experimental results are less clear

glycerol, laponite, spin-glasses, etc. (Jabbari-Bonn, Abou-Gallet, Cili-

berto et al., Bartlett et al, Hérisson & Ocio, etc.).
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Summary
classical context

• The energy density approaches the equilibrium one, typically as ∆E ' t−b.

• The correlation and linear response functions have highly non-trivial time-de-

pendencies (aging effects, non-exponential relaxations)

• There is an extended time-regime in which correlation and linear response

vary "macroscopically" but the effective temperature Teff = T ∗ is constant.

• T ∗ can be related to the variation of a configurational entropy with respect

to the energy-density (à la micro-canonic.)

• T ∗ has intuitive properties : hotter for more disordered, colder for more or-

dered.

Cases in which this does not hold were exhibited by, e.g., Sollich et al

in models with unbounded energy or artificial (emerging?) dynamic rules.
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IsTeff related to an entropy?
Granular matter

• Static granular matter : blocked states mgd� kBT

• Hypotheses to describe weakly driven granular matter :

– walk from blocked state to blocked state

– blocked states are visited with equal probability working at

fixed V (and E ) : P ({~ri}blocked) = constant.

– From the entropy of blocked states

S(V, E) = kB ln # blocked states(V, E)

define the temperature T−1
Edw = ∂S(V,E)

∂E

and the compactivity X−1
Edw = ∂S(V,E)

∂V

Edwards & Oakeshott 89
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