Non potential forces

Leticia F. Cugliandolo

Sorbonne Universités, Université Pierre et Marie Curie Laboratoire de Physique Théorique et Hautes Energies Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia/seminars
Review article : J. Phys. A 44, 483001 (2011)

Heraklion, Greece, November 2014.

Plan

LFC, J. Kurchan, P. Le Doussal L. Peliti 98

Berthier, LFC, Iguain 00

Dynamics out of equilibrium

One condition for equilibrium explicitly broken

Take	an	open	system	coupled	to	an
envir	onn	nent				

Environment						
Interaction System						

Necessary :

— The bath should be in equilibrium

same origin of noise and friction.

— Deterministic force : conservative time-independent forces only, $\vec{F} = -\vec{\nabla}V$.

— Either the initial condition is taken from the equilibrium pdf, or the latter should be reached after an equilibration time t_{eq} :

${\rm Driven}\ p{\rm -spin}\ {\rm models}$

Hamiltonian (potential energy)

$$H_J[\{s_i\}] = -\sum_{i_1...i_p} J_{i_1...i_p} \underbrace{s_{i_1} \dots s_{i_p}}_{=} + z \left(\sum_i s_i^2 - N\right)$$

symmetric

under exchanges of any pair of indices $i_k \leftrightarrow i_j$

The random coupling exchanges taken from Gaussian pdf with zero mean and variance $[J_{i_1...i_p}^2] = p!J^2/N^{p-1}$ and they are also symmetric with respect to $i_k \leftrightarrow i_j$

Langevin dynamics

$$d_t s_i(t) = +\sum_{i_2...i_p} J_{ii_2...i_p} s_{i_2}(t) \dots s_{i_p}(t) - z(t)s_i(t) + \xi_i(t)$$

${\rm Driven}\ p{\rm -spin}\ {\rm models}$

Hamiltonian (potential energy)

$$H_J[\{s_i\}] = -\sum_{i_1...i_p} J_{i_1...i_p} \underbrace{s_{i_1} \dots s_{i_p}}_{} + z \left(\sum_i s_i^2 - N\right)$$

symmetric

under exchanges of any pair of indices $i_k \leftrightarrow i_j$

The random coupling exchanges taken from Gaussian pdf with zero mean and variance $[J_{i_1...i_p}^2] = p!J^2/N^{p-1}$ and they are also symmetric with respect to $i_k \leftrightarrow i_j$

Langevin dynamics with no symmetric exchanges $J_{ii_2i_3...i_p} \neq J_{i_2ii_3...i_p}$ $d_t s_i(t) = + \sum_{i_2...i_p} J_{ii_2...i_p} s_{i_2}(t) \dots s_{i_p}(t) - z(t)s_i(t) + \xi_i(t)$

${\rm Driven}\ p{\rm -spin}\ {\rm models}$

Hamiltonian (potential energy)

$$H_J[\{s_i\}] = -\sum_{i_1...i_p} J_{i_1...i_p} \underbrace{s_{i_1}...s_{i_p}}_{} + z\left(\sum_i s_i^2 - N\right)$$

symmetric

under exchanges of any pair of indices $i_k \leftrightarrow i_j$

The random coupling exchanges taken from Gaussian pdf with zero mean and variance $[J_{i_1...i_p}^2] = p!J^2/N^{p-1}$ and they are also symmetric with respect to $i_k \leftrightarrow i_j$

Exchanges

$$J_{ii_{2}i_{3}...i_{p}} = J^{S}_{ii_{2}i_{3}...i_{p}} + \alpha J^{A}_{ii_{2}i_{3}...i_{p}}$$

${\rm Driven} \ p{\rm -spin} \ {\rm models}$

Hamiltonian (potential energy)

$$H_J[\{s_i\}] = -\sum_{i_1\dots i_p} J_{i_1\dots i_p} \underbrace{s_{i_1}\dots s_{i_p}}_{\text{symmetric}} + z\left(\sum_i s_i^2 - N\right)$$

under exchanges of any pair of indices $i_k \leftrightarrow i_j$

The random coupling exchanges taken from Gaussian pdf with zero mean and variance $[J_{i_1...i_p}^2] = p!J^2/N^{p-1}$ and they are also symmetric with respect to $i_k \leftrightarrow i_j$

Langevin dynamics with time-dependent forces

$$d_t s_i(t) = \sum_{i_2 \dots i_p} J^S_{ii_2 \dots i_p} s_{i_2}(t) \dots s_{i_p}(t) - z(t) s_i(t) + h_i(\omega, t) + \xi_i(t)$$

Potential force

p=3 Ising spin model with ${\cal N}=50$ at T=0.01

Initial condition dependent metastable state reached $\mathcal{E}_{\infty} > \mathcal{E}_{\mathrm{th}} = -1.155 \, J$

Non-potential force

Driven p = 3 Ising spin model with N = 50

Waiting-time dependence (α fixed) and α dependence in steady state

$$J_{ii_{2}i_{3}...i_{p}} = J^{S}_{ii_{2}i_{3}...i_{p}} + \alpha J^{A}_{ii_{2}i_{3}...i_{p}}$$

Non-potential force

Driven p=3 Ising spin model with $N\to\infty$

Non-potential force

Driven p = 3 Ising spin model with N = 50

Time dependent energy density

$$J_{ii_{2}i_{3}...i_{p}} = J^{S}_{ii_{2}i_{3}...i_{p}} + \alpha J^{A}_{ii_{2}i_{3}...i_{p}}$$

Time-dependent force

Driven p = 3 Ising spin model with N = 50

Time dependent magnetisation and energy density

Time-dependent force

Driven p = 3 Ising spin model with N = 50

 $h(\omega,t)=h\cos(\omega t)$ with $h=2,\ \omega=0.01$

Stroboscopic-time dependent magnetisation and energy density