
Dynamics of disordered systems

Leticia F. Cugliandolo

Sorbonne Universités, Université Pierre et Marie Curie

Laboratoire de Physique Théorique et Hautes Energies

Institut Universitaire de France

leticia@lpthe.jussieu.fr

www.lpthe.jussieu.fr/̃ leticia/seminars

Boulder, Colorado, USA, 2017

1



Plan of Lectures

1. Introduction

2. Coarsening processes

3. Formalism

4. Dynamics of disordered spin models

2



References

— Phase ordering kinetics & critical dynamics
A. J. Bray, Theory of phase ordering kinetics, Adv. Phys. 43, 357 (1994).

S. Puri, Kinetics of Phase Transitions, (Vinod Wadhawan, 2009).

L. F. Cugliandolo, Topics in coarsening phenomena, arXiv:0911.0771, Physica A 389, 4360 (2010).

F. Corberi & A. Politi eds., Coarsening dynamics, Comptes Rendus Physique 16 (2015).

P. Krapivsky, S. Redner and E. Ben-Naim, A kinetic view of statistical physics (Cambridge University

Press, 2010).

M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions : Volume 2 : Ageing and Dynamical

Scaling Far from Equilibrium, (Springer, 2010).

L. F. Cugliandolo, Dynamics of glassy systems, Les Houches Session 77, arXiv :cond-mat/0210312.

U. C. Tauber, Critical Dynamics : A Field Theory Approach to Equilibrium and Non-Equilibrium Sca-

ling Behavior (Cambridge University Press, 2014)

3



Plan of the lecture

1. The phenomenon

2. Theoretical setting

3. Critical and sub-critical quenches

4. Dynamic scaling

5. Dynamic universality classes

6. Two-time correlations and ageing

7. Two-time responses and loss of memory

8. Mean-field models

9. Modern studies

4



Plan of the lecture

1. The phenomenon

2. Theoretical setting

3. Critical and sub-critical quenches

4. Dynamic scaling

5. Dynamic universality classes

6. Two-time correlations and ageing

7. Two-time responses and loss of memory

8. Mean-field models

9. Modern studies

5



Phenomenon

The talk focuses on a very well-known example

Dynamics following a change of a

control parameter

• If there is an equilibrium phase transition, the equilibrium phases

are known on both sides of the transition.

i.e. the asymptotic state is known.

• For a purely dynamic problem, the absorbing states are known.

• The dynamic mechanism towards equilibrium (or the absorbing states)

is understood the systems try to order locally in one of the few competing

states.
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Interests and goals

Practical interest, e.g.

• Mesoscopic structure effects on the opto-mechanical properties of phase

separating glasses

• Cooling rate effects on the density of topological defects in cosmology and

condensed matter

Fundamental interest, e.g.

• A theoretical problem beyond perturbation theory.

• Are there growth phenomena in problems with yet unknown dyna-

mic mechanisms? e.g. glasses

• Generic features of macroscopic systems out of equilibrium?
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Context
Open systems

Our interest is to describe the dynamics of a classical (or quantum) sys-

tem coupled to a classical (or quantum) environment.

The Hamiltonian of the ensemble is

H = Hsyst +Henv +Hint

The dynamics of all variables are given by Newton (or Heisenberg) rules, de-

pending on the variables being classical (or quantum).

Esyst(t) 6= ct, and e0 � Esyst � Eenv .
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2d Ising model
Snapshots after an instantaneous quench to T at t = 0

T = Tc

T < Tc

At T = Tc critical dynamics At T < Tc coarsening

A certain number of interfaces or domain walls in the last snapshots.
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Membranes Proteins

Wadsten, Wöhri, Snijder, Katona, Gardiner, Cogdell, Neutze, Engström,

Lipidic Sponge Phase Crystallization of Membrane Proteins, J. Mol. Biol. 06
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Phase separation in glasses

t = 1 min

Gouillart (Saint-Gobain), Bouttes & Vandembroucq (ESPCI) 11-14
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Phase separation in glasses

t = 4 min

Gouillart (Saint-Gobain), Bouttes & Vandembroucq (ESPCI) 11-14
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Phase separation in glasses

t = 16 min

Gouillart (Saint-Gobain), Bouttes & Vandembroucq (ESPCI) 11-14
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Phase separation in glasses

t = 64 min

Gouillart (Saint-Gobain), Bouttes & Vandembroucq (ESPCI) 11-14
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2d Ising Model (IM)
Archetypical example for classical magnetic systems

The Hamiltonian or energy function is

H = −J
∑
〈ij〉

sisj

si = ±1 Ising spins.

〈ij〉 sum over nearest-neighbours on the lattice.

J > 0 ferromagnetic coupling constant.

critical temperature Tc > 0 for d > 1.

Equilibrium Paramagnetic & ferromagnetic states above & below Tc
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Ginzburg-Landau
Continuous scalar statistical field theory

Coarse-grain the spin

φ(~r) = V −1
~r

∑
i∈V~r si.

The partition function is Z =
∫
Dφ e−βF(φ) with

F(φ) =
∫
ddr

{
1
2
[∇φ(~r)]2 + T−J

2
φ2(~r) + g

4
φ4(~r)

}
Elastic + potential energy with the latter inspired by the results for the fully-

connected model (entropy around φ ∼ 0 and symmetry arguments).

Uniform saddle point in the V →∞ limit : φsp(~r) = 〈φ(~r)〉 = φ0.

The free-energy density is limV→∞ fV (β, J, g) = limV→∞ V
−1F(φ0).
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2nd order phase-transition
Bi-valued equilibrium states related by symmetry

F

Ginzburg-Landau free-energy Scalar order parameter

e.g. Ising magnets
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2d Ising Model, dynamics
Archetypical example for classical magnetic systems

H = −J
∑
〈ij〉

sisj

si = ±1 Ising spins.

〈ij〉 sum over nearest-neighbours on the lattice.

J > 0 ferromagnetic coupling constant.

critical temperature Tc > 0 for d > 1.

Monte Carlo rule si → −si accepted with p = 1 if ∆E < 0

p = e−β∆E if ∆E > 0

p = 1/2 if ∆E = 0

Non-conserved order parameter dynamics [ ↑↓ towards ↑↑ ] etc. allowed.

[m = 0 to m = 2]
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Evolution
Non-conserved order parameter dynamics

Non-conserved order parameter 〈φ〉(t, T ) 6= ct

e.g. single spin flips with Glauber or Monte Carlo stochastic rules.

Development of magnetization in a ferromagnet.
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d-dimensional magnets
More general ferromagnetic models

H = −
∑
〈ij〉

Jij ~si · ~sj

Jij > 0∑
〈ij〉

si = ±1

~si = (sxi , s
y
i )

`d~φ(~r)=
∑
i∈V~r~si

L

Tc > 0

From a pdf with positive support

Sum over nearest-neighbours on a d-dim. lattice.

Ising spins.

xy two-component spins.

Coarse-grained field over the volume V = `d

Linear size of the system L� `� a

for d > 1 and L→∞.

Coupling to the bath mimicked by Monte Carlo updates
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Stochastic dynamics
Open systems

• Microscopic: identify the ‘smallest’ relevant variables in the problem (e.g.,

the spins) and propose stochastic updates for them, as the Monte Carlo or

Glauber rules.

• Coarse-grained: write down a stochastic differential equation for the field,

such as the effective (Markov) Langevin equation

m~̈φ(~r, t)︸ ︷︷ ︸ + γ0
~̇φ(~r, t)︸ ︷︷ ︸ = ~F (~φ)︸ ︷︷ ︸ + ~ξ(~r, t)︸ ︷︷ ︸

Inertia Dissipation Deterministic Noise

with ~F (~φ) = −δF(~φ)/δ~φ (with the double-well f )

e.g., time-dependent stochastic scalar Ginzburg-Landau equation or the sto-

chastic Gross-Pitaevskii equation.
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Models
Discrete vs. continuous

Ising spin models

H = −
∑
ij

Jijsisj

NCOP [ ↑↓ 7→ ↑↑ ]

COP [ ↑↓ 7→ ↓↑ ]

Field theories

F [φ] =
∫
ddr
[

1
2
(∇φ)2 − µ

2
φ2 + g

4
φ4)
]

∂tφ(~r, t) = δφ(~r,t)F [φ] + ξ(~r, t)

∂tφ(~r, t) = ∇2δφ(~r,t)F [φ] + η(~r, t)

Overdamped limit is fine

In the COP case 〈η(~x, t)η(~y, t′)〉 = 2kBT∇2δ(~x− ~y)δ(t− t′)
And generalisations for vector cases. Quenched disorder can be intro-

duced by taking the Jij or the parameters in the field theory from a pdf.
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Equilibrium configurations
Up & down spins in a 2d Ising model

T →∞ T = Tc T < Tc

Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .

8

〈si〉eq = 0 〈si〉eq = 0 〈si〉eq+ > 0

φ(~r) = 0 φ(~r) = 0 φ(~r) > 0

Coarse-grained scalar field φ(~r) ≡ 1
V~r

∑
i∈V~r si
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The problem
Up & down spins in a 2d Ising model

Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .

8

T →∞ T = Tc T < Tc

Question : starting from equilibrium at T0 → ∞ or T0 = Tc how is

equilibrium at T = Tc or T < Tc attained?

26



2d Ising model
Snapshots after an instantaneous quench at t = 0

T = Tc

T < Tc

At T = Tc critical dynamics At T < Tc coarsening

A certain number of interfaces or domain walls in the last snapshots.
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Domain growth

• At T = Tc the system needs to grow structures of all sizes.

Critical coarsening.

• At T < Tc : the system tries to order locally in one of the two com-

peting equilibrium states at the new conditions.

Sub-critical coarsening.

The linear size of the equilibrated patches increases in time.

− The relaxation time tr needed to reach 〈φ〉eq(T/J) diverges with the

size of the system, tr(T/J, L)→∞ when L→∞ for T ≤ Tc.

− Dissipative dynamics d〈E〉/dt < 0. Energy density is reduced by

diminishing the density of domain walls.
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Statement

In both cases one sees the growth of ‘red and white’ patches and

interfaces surrounding such geometric domains.

More precisely, spatial regions of local equilibrium (with vanishing or

non-vanishing order parameter) grow in time and

a growing lengthR(t, T/J) can be computed with

the help of dynamic scaling.
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Critical growth
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• Black curve : equilibrium relaxation, r2−d−η.

• Coloured curves are for different times after the quench and they slowly

approach the equilibrium one.

• From C(Rc(t), t) = 1/e one gets Rc(t) ' t1/zeq

(Other prescriptions give equivalent results.)
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Dynamic scaling
After quenches (set J = 1 for notational simplicity)

At late times there is a single length-scale, the typical radius of the equi-

librium structures (domains below Tc) R(t, T ), such that the structure

is (in statistical sense) independent of time when lengths are scaled by

R(t, T ), e.g.

C(r, t) ≡ 〈 si(t)sj(t) 〉||~xi−~xj |=r ∼ f

(
r

R(t, T )

)
,

C(t, tw) ≡ 〈 si(t)si(tw) 〉 ∼ fc
( R(t, T )

R(tw, T )

)
,

etc. when L � r � ξ(T ), t, tw � t0 and C small enough (see

below).

Suggested by experiments and numerical simulations. Proved for a few cases.

Review Bray, 1994.
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Dynamic scaling
in phase ordering kinetics

Growing length `(t) and equilibrium reached for `(teq) ' L

Typically `(t) ' t1/z and teq ' Lz

Excess energy w.r.t. the equilibrium one stored in the domain walls ; ∆E(t) ' `−a(t)
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Dynamic scaling
Quench of the 2dIM with NCOP from T0 →∞ to T = 0

〈φ(t)〉 = 0 Cceq(r) ' e−r/ξeq
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• Coloured curves are C(r, t) for different times after the quench.

• The growing length is R(t, T ) ' t1/zd with zd = 2

• R(t, T ) is the averaged linear size of the domains.
Review Bray 94
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Dynamic scaling
Quench of the 2dIM with NCOP from T0 →∞ to T < Tc

Scaling regime a� r � L, r ' R(t, T ) ' t1/zd

C(r, t) ' m2
eq(T ) fc

(
r

R(t,T )

)
Scaling looks perfect

r/R(t, T )
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Space-time correlation
Separation of fime-scales & dynamic scaling

Critical quench C(r, t) ' Ceq(r) fc

(
r

Rc(t)

)
Ceq(r) ' r2−d−η , limx→0 fc(x) = 1 and limx→∞ fc(x) = 0.

Sub-critical C(r, t) ' [Ceq(r)−m2
eq] +m2

eq f

(
r

R(t, T )

)
C(0, t) = 1 ∀t, limr→0Ceq(r) = 1, limr→∞Ceq(r) ∝ 〈si〉2eq = m2

eq ,

limx→0 f(x) = 1 (long times) and limx→∞ f(x) = 0 (short distances).
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Growing length
Dynamic universality classes

Use the growing length R(t, T ) to identify dynamic universality

classes.

They depend on the dimension of the order parameter and the dy-

namic mechanism of growth (intimately related to the conservation

laws).
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Growing length
Dynamic universality classes at the critical point

At Tc, dynamic RG techniques work very well.

U. C. Tauber, Critical Dynamics : A Field Theory Approach to Equilibrium and

Non-Equilibrium Scaling Behavior (Cambridge University Press, 2014)

One finds dynamic scaling, with the growing length

Rc(t) ' t1/zc

zc can be computed with methods that are very similar to critical expo-

nents in static phase transitions.

Dynamic universality classes classified by the zc values.

The scaling functions can be estimated as well
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Growing length
Dynamic universality classes below the critical point

No systematic method

Focus on the dynamic mechanisms
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Scalar field w/NCOP dynamics

• Curvature driven (T = 0): ~v ≡ d~n

dt
∝ Kn̂ with K = ~∇ · n̂

Allen & Cahn 79

• Domain wall roughening (T > 0)

• Domain wall roughening and pinning by quenched disorder

e.g. elastic line in random media. Kolton et al 05
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Curvature driven

Numerical solution of the time-dependent Ginzburg-Landau equation from

A. Langins (1st year master project)

42
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MC dynamics 2dIM
The typical length-scale⇔ a typical area

R(t, T ) ∼ λ(T ) t1/2 ⇔ A(t, T ) ∼ λ2(T ) t

 0
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 0  0.5  1  1.5  2  2.5

λ
(T

)

T

NB the exponent 1
2 is independent of T and the details of the dynamics, lattice,

etc. as long as the order parameter is non-conserved & there is no disorder.

The T -dependence in λ(T ) is due to the roughening of the domain walls.
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Phase separation
Demixing transitions

Two species • and •, repulsive interactions between them.

Sketch
Experimental phase diagram

Binary alloy, Hansen & Anderko, 54
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Scalar field w/COP
Phase separation

Matter diffusion
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Phase separation
Spinodal decomposition in binary mixtures

A species≡ spin up ; B species≡ spin down

2d Ising model with Kawasaki dynamics at T

locally conserved order parameter

50 : 50 composition Rounder boundaries

R(t, T ) ' λ(T )t1/3 Huse 93
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Weak disorder
e.g., random ferromagnets

At short time scales the dynamics is relatively fast and independent of

the quenched disorder ; thus

R(t, T ) ' λ(T )t1/zd

At longer time scales domain-wall pinning by disorder dominates.

Assume there is a length-dependent barrier B(R) ' ΥRψ to over-

come

The Arrhenius time needed to go over such a barrier is tA ' t0 e
B(R)
kBT

This implies

R(t, T ) '
(
kBT

Υ
ln t/t0

)1/ψ
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Weak disorder
Still two ferromagnetic states related by symmetry

R(t, T ) '

 λ(T )t1/zd R � Lc(T ) curvature-driven

Lc(T )(ln t/t0)1/ψ R � Lc(T ) activated

with Lc(T ) a growing function of T .

Inverting times as a function of length t ' [R/λ(T )]zd eR/Lc(T )

At short times this equation can be approximated by an effective power

law with a T -dependent exponent :

t ' Rzd(T ) zd(T ) ' zd [1 + ct/Lc(T )]

Fisher & Huse, Paul, Rieger & Schehr, etc. Crossover in Bustingorry et al. 09
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Planar magnets
Schrielen pattern : gray scale according to sin2 2θi(t)

Spin-waves Vortices (planar spins turn around these points)

After a quench vortices annihilate and tend to bind in pairs

R(t, T ) ' λ(T ) [t/ ln(t/t0(T ))]1/2

Yurke et al 93, Bray & Rutenberg 94, Jelic & LFC 11
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Frustrated magnets
e.g., 2d spin ice or vertex models

Stripe growth in the FM phase

Anisotropic growth,R⊥(t, T ) andR‖(t, T )

Levis & LFC 11
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Universality classes
as classified by the growing length

R(t, T ) '



λ(T ) t1/2 scalar NCOP zd = 2

λ(T ) t1/3 scalar COP zd = 3

λ(T )

(
t

ln t

)1/2

planar NCOP in d = 2

etc.

Temperature and other microscopic parameters appear in the prefactor.
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Universality classes
as classified by the growing length

R(t, T ) '



λ(T ) t1/2 scalar NCOP zd = 2

λ(T ) t1/3 scalar COP zd = 3

λ(T )

(
t

ln t

)1/2

planar NCOP in d = 2

λ(T ) (ln t)1/ψ weak disorder NCOP

Are scaling functions independent of

temperature, other parameters, microscopic dynamics?

Super-universality?

Review Bray 94, Corberi, Lippiello, Mukherjee, Puri & Zannetti 11
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Dynamic scaling
Scaling functions

very early MC simulations Lebowitz et al 70s & experiments

One identifies a growing linear size of equilibrated patches

R(t, T )

If this is the only length governing the dynamics, the space-time corre-

lation functions should scale withR(t, T ) according to

At T = Tc C(r, t) ' Ceq(r) fc( r
Rc(t)) Scaling fct fc 4

AtT < Tc C(r, t) ' Cceq(r)+m2
eq f( r

R(t,T )) Scaling fct f ?

Reviews Hohenberg & Halperin 77 (critical) Bray 94 (sub-critical)
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Two-time self-correlation
e.g., MC simulation of the 2dIM at T < Tc

C(t, tw) = N−1
∑N

i=1〈si(t)si(tw)〉

 0.1

 1

 1  10  100  1000
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Stationary relaxation

Aging decay

Separation of time-scales : stationary – aging

C(t, tw) = Cst(t− tw) +m2
eq f

( R(t, T )

R(tw, T )

)
Cst(0) = 1−m2

eq , limx→∞Cst(x) = 0, f(1) = 1, limx→∞ f(x) = 0.
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Two-time self-correlation
Comparison

Critical coarsening (T = Tc) Sub-critical coarsening (T < Tc)

Separation of time-scales

Multiplicative Additive
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Aging
Older samples relax more slowly

Older samples need more time to relax

spontaneously (correlation functions)

after a change in conditions (response functions)

tw is the time that measures the age of the system

Huge literature on this phenomenology. Some reviews of experimental

measurements were written by Struick on polymer glasses, Vincent et al.

& Nordblad et al. on spin-glasses, McKenna et al. on all kinds of glasses.
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Response to perturbations

The perturbation couples linearly to the observable B[{si}]

H → H − hB[{si}]

The linear instantaneous response of another observable A[{si}] is

RAB(t, tw) ≡
〈
δA[{si}](t)
δh(tw)

∣∣∣∣
h=0

〉
The linear integrated response or dc susceptibility is

χAB(t, tw) ≡
∫ t

tw

dt′RAB(t, t′)
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Linear response
Critical and sub-critical coarsening

Critical coarsening

χ(t, tw) = β − χeq(t− tw)g

( R(t, T )

R(tw, T )

)
Sub-critical coarsening

χ(t, tw) = χeq(t− tw) + [R(tw, T )]−aχ g

( R(t, T )

R(tw, T )

)
In both cases : χeq(t− tw) = −(kBT )−1dCeq(t− tw)/d(t− tw).

To be proven in the 3rd Lecture

Reviews

Crisanti & Ritort 03, Calabrese & Gambassi 05, Corberi et al. 07, LFC 11
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Linear response
Sub-critical coarsening in the MC dynamics of 2dIM

Lippiello, Corberi & Zannetti 05
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Linear response
Coarsening vs glassy

1e+00

1e-01
1e+051e+031e+011e-01

χ

t-tw

rapid & stationary (χ st)

aging & slow (χag)

χ
ea

Lippiello, Corberi & Zannetti 05 Sketch Chamon & LFC 07

There is no (weak) long-term memory in the coarsening problem. Just

the stationary part will remain asymptotically, contrary to the sketch on

the right for glasses & spin-glasses.
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Two-time self-correlation
Comparison
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The spherical p = 2 model

H = −
∑
ij

Jijsisj + z

(∑
i

s2
i −N

)

Fully connected interactions

Gaussian distributed

interaction strengths Jij

Spherical spins
∑

i s
2
i = N

z is a Lagrange multiplier ρ(λµ) ∝
√

(2J)2 − λ2
µ

H = −
∑
µ

λµs
2
µ + z

(∑
µ

s2
µ −N

) Key: the largest eigenvalue

becomes diffusive,

λmax − z∞ = 0

Same scaling laws for two-time corr. and resp. but no space dependence
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The O(N) model

Upgrade the field to a vector φ 7→ ~φ with a = 1, . . . , N components
~φ = (φ1, . . . , φN)

The (over-damped) Ginzburg-Landau equation is now

γ0∂tφa(~r, t) = − δF [~φ]

δφa(~r, t)
+ ξa(~r, t)

The N →∞ limit allows one to decouple the vector components :

φa(~r, t)[µ− 1
N

∑N
b=1 φ

2
b(~r, t)] 7→ φa(~r, t)z(t)

and the equations are now linear with a global constraint.

Coarsening is linked to the growth of the diffusive ~k = 0 mode.
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The O(N) model

Upgrade the field to a vector φ 7→ ~φ with a = 1, . . . , N components
~φ = (φ1, . . . , φN)

The equations are now linear with a global constraint

γ0∂tφa(~r, t) = ∇2φa(~r, t) + z(t)φa(~r, t) + ξa(~r, t)

and

z(t) = µ−N−1
∑

a φ
2
a(~r, t)

Solve for φa(~r, t) as a function of z(t) and then impose the constraint to

fix z(t).

Coarsening is linked to the growth of the ~k = 0 mode, i.e. tendency to

homogeneous order.
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Summary

• At and below Tc growth of equilibrium structures.

• The linear size of the equilibrium patches is measured by R(t, T )

• At Tc vanishing order parameter

Multiplicative scaling C ' CeqCag ; χ ' χeqχag

• Below Tc non-vanishing order parameter

Additive scaling C ' Ceq + Cag ; χ ' χeq + χag

• In both cases Cag is finite while χag vanishes asymptotically.

We shall discuss χ and how it compares to C later.
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Phase ordering kinetics
The lecture was about

• Growth of equilibrium patches at Tc and below Tc.

• Divergence of teq(L) with the system size.

• Existence of a single growing lengthR(t, T )

• Separation of time-scales and dynamic scaling, e.g. C = Ceq + Cag.

• Two kinds of correlations : Space-time and two-time ones.

• Dynamic universality classes at and below Tc.

• The more tricky/rich linear susceptibility.

Is there a static growing length in all systems with slow dynamics ?

Which one?
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Plan of the lecture

1. The phenomenon

2. Theoretical setting

3. Critical and sub-critical quenches

4. Dynamic scaling

5. Dynamic universality classes

6. Two-time correlations and ageing

7. Two-time responses and loss of memory

8. Mean-field models

9. Modern studies
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Multiplicative noise
Numerical integration of the scalar field equations

NCOP COP

R(t, T ) ' t1/2 R(t, T ) ' t1/3

Ibañes, García-Ojalvo, Toral & Sancho 00
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Voter model
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Phenomenon

Similar questions can be asked in very well-known problems in math, e.g.

Dynamics of a voter model starting from

a random initial condition

• Purely dynamic, violation of detailed balance, no phase transition

• Two absorbing states

• The dynamic mechanism towards absorption is understood

domain growth is driven by interfacial noise
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2d Voter Model (VM)
Archetypical example of opinion dynamics

H does not exist - kinetic model

si = ±1 Ising spins that

sit on the vertices of a lattice.

Voter update rule

choose a spin at random, say si

choose one of its 2d neighbours at random, say sj

set si = sj

In two dimensions full consensus, i.e. m = L−d
∑Ld

i=1 si = ±1 is reached

in a timescale tC ' L2 (with lnL corrections)

Clifford & Sudbury 73, Holley & Liggett 75, Cox & Griffeaths 86
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Phase ordering kinetics
si = ±1 at t = 0 MCs, snapshots at t = 4, 64, 512, 4096 MCs

Ising

T = 0

Tc

Voter
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Active matter dynamics
2d dumbbell system

|ψ6i| at φ = 0.74 and Pe = 10 (coarsening towards co-existence)
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Percolation issues
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2d square IM at T=0

t=0.0
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2d square IM at T=0

t=0.57533
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2d square IM at T=0

t=0.94844
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2d square IM at T=0

t=2.00847
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2d square IM at T=0

t=2.57898
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2d square IM at T=0

t=3.99211
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2d square IM at T=0

t=6.58423
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2d square IM at T=0

t=7.46144
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2d square IM at T=0
The percolating structure was decided at tp ' 8 MCs

t=7.46144 t=128.0

Arenzon, Bray, LFC & Sicilia 07 Blanchard, Corberi, LFC & Picco 14
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Complex field & cold atoms
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Complex field theory in 3d
Relativistic bosons; 4He, type II superconductors, cosmology, etc.

−c−2ψ̈ +∇2ψ + 2iµψ̇ = g(ψ2 − ρ)ψ

c is the velocity of light, ρ and g parameters in (Mexican hat) potential.

Limits

µ→ 0 : −c−2ψ̈ +∇2ψ = g(|ψ|2 − ρ)ψ Goldstone

c→∞ : 2iµψ̇ +∇2ψ = g(|ψ|2 − ρ)ψ Gross-Pitaevskii

models
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Complex field theory in 3d
Relativistic bosons; 4He, type II superconductors, cosmology, etc.

−c−2ψ̈ +∇2ψ + 2iµψ̇ = g(ψ2 − ρ)ψ

The energy functional

E =
∫
d3x

(
c−2|ψ̇|2 + |~∇ψ|2 − gρψ2 + gψ4

)
is conserved under the dynamics.

The energy is minimised by the static configuration ψ =
√
ρ eiχ with χ = ct

There are static vortex solutions, e.g. ψ(~x) = f(r) einθ with f(0) = 0 and

f(r → ∞) =
√
ρ, and n ∈ Z (thin tubes at the centre of which the field

vanishes and the phase turns around).

Tsubota, Kasamatsu & Kobayashi 13, Kobayashi & Nitta 15, etc.
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Complex field theory in 3d
Stochastic noise and dissipation added

−c−2ψ̈ +∇2ψ + 2iµψ̇ − γψ̇ = g(ψ2 − ρ)ψ −√γTξ

Langevin-like dynamics

−γ viscosity, ξ complex Gaussian white noise in normal form

〈ξi(~x, t)〉 = 0 and 〈ξi(~x, t1)ξj(~y, t2)〉 = δijδ
(3)(~x− ~y)δ(t1 − t2)

Passage to Fokker-Planck formalism allows to show that the dynamics

takes the system to

limt→∞ P (ψ, t) = PGB(ψ) ∝ e−βE

Kobayashi & LFC 16
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Complex field theory in 3d
Relativistic bosons; 4He, type II superconductors, cosmology, etc.

−c−2ψ̈ +∇2ψ + 2iµψ̇ − γψ̇ = g(ψ2 − ρ)ψ −√γTξ

Langevin-like dynamics

−γ viscosity, ξ Gaussian white noise in normal form

In the limit c→∞, the stochastic Gross-Pitaevskii equation

(2iµ− γ)ψ̇ = −∇2ψ + g(ψ2 − ρ)ψ +
√
γTξ

Gardiner et al 00s
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3d XY lattice model
Archetypical classical magnetic example

H = −J
∑
〈ij〉

~si · ~sj

J > 0 ferromagnetic coupling constant.

〈ij〉 sum over nearest-neighbours on a 3d lattice

~si planar spins: two components with constant modulus⇒ angle θi.

Second order phase transition with spontaneous symm breaking at Tc > 0.

Order parameter: spin-alignment, ~m ≡ N−1
∑

i〈~si〉.
No intrinsic spin dynamics, Monte Carlo rules mimic coupling to thermal bath.

Non-conserved order parameter dynamics [ ↑↓ towards ↑↑ ] etc. allowed.
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Statics
Phase transition and order parameter in the field equation

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

m

T

0

0.25

0.5

2 2.1 2.2 2.3 2.4
L = 40

60
80

100
∝ (Tc − T )β

L3 m = |∑ijk〈ψijk〉|
critical temperature

Tc = 2.26

critical exponent

β = 0.347

Kobayashi & LFC 16

Tc and critical exponents from kurtosis (Binder parameter), susceptibility, speci-

fic heat, etc. Values compatible w/results from simulations Ballesteros et al. 96,

Hasenbusch & Török 99 and ε expansion Guida & Zinn-Justin 98, Täuber &

Diehl 14 for models in the same universality class.
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Vortex configurations
In equilibrium

0.6 Tc 0.8 Tc Tc 1.2 Tc

Periodic boundary conditions (torus) implies that the vortex lines are closed,

i.e. loops.

Stochastic reconnection rule.

All vortex loops in blue, the longest one in red.
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Dynamics after a quench
with g the control parameter

In the picture: annealing with finite rate.

Infinitely fast quench: T � Tc for t < 0 and T = 0 for t > 0
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Complex field theory in 3d
Progressive elimination of vortex loops after a quench

T � Tc T = 0

t = 0 t = 3 t = 5

As ρvortex ↓ the reconnection rule loses importance

Kobayashi & LFC 16
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Slow cooling & Kibble-Zurek
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Finite rate quenching protocol
How is the scaling modified for a very slow quenching rate?

∆g ≡ g(t)− gc = −t/τQ with τQ1 < τQ2 < τQ3 < τQ4

Standard time parametrization g(t) = gc − t/τQ

Simplicity argument: linear cooling could be thought of as an approxima-

tion of any cooling procedure close to gc.
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Theoretical motivation
Network of cosmic strings

They should affect the Cosmic Microwave Background, double quasars, etc.

Picture from M. Kunz’s group (Université de Genève)
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Topological defects
instantaneous configurations

Domain walls in the 2dIM Vortices in the 3d xy model

One can give a precise mathematical definition but the visual one is enough
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Density of topological defects
Kibble-Zurek mechanics for 2nd order phase transitions

The three basic assumptions

• Defects are created close to the critical point.

• Their density in the ordered phase is inherited from the value it takes

when the system falls out of equilibrium on the symmetric side of the

critical point. It is determined by

Critical scaling above Tc

• The dynamics in the ordered phase is so slow that it can be neglected.

and one claim

• results are universal.

that we critically revisited within ‘thermal’ phase transitions
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Topological defects
after an instantaneous quench : dynamic scaling

∆n(t) ' [R(t, T )]−d ' [λ(T (t))]−d t−d/zd

Remember the initial (g →∞) configuration: already there !
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