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5 lectures & 2 exercise sessions

1. Introduction

2. Active Brownian dumbbells

3. Effective temperatures

4. Two-dimensional equilibrium phases

5. Two-dimensional collective behaviour of active systems
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Fifth lecture
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Results & questions

• Brand new Bernard & Krauth two step transition scenario

Liquid (1st order) Hexatic (BKTHNY) Solid

confirmed for hard and soft passive disks

• Passive molecules?

• Active disks and molecules?

• Mobility induced phase transition for purely repulsive interactions vs.

just an extension of the Bernard & Krauth passive system scenario
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Phase diagram
Active dumbbells

T = 0.05
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Coexistence region
& lines of constant proportion
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Interacting active dumbbells
Many-body interacting system

Two spherical atoms with diameter σd and mass md

Massless spring modelled by a finite extensible non-linear elastic (fene) force

between the beads i and j belonging to the same dumbbell,Ffene = −k(ri − rj)
1− r2

ij/r
2
0

,

with an additional repulsive contribution (WCA) to avoid colloidal overlapping.

Polar active force along the main molecular axis Fact = Fact n̂

Purely repulsive interaction between colloids in different molecules.

Langevin modelling of the interaction with the embedding fluid:

isotropic viscous forces,−γvi, and independent noises, ηi, on the beads.
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Particles with shape
e.g., a diatomic molecule or a dumbbell

mdr̈i(t) = −γṙi(t) + Fpoti(ri, ri+1) + ηi

mdr̈i+1(t) = −γṙi+1(t) + Fpoti+1
(ri, ri+1) + ηi+1

with Fpot = Fwca + Ffene, V = Vwca + Vfene and

Vwca(ri, ri+1) =

 VLJ(ri,i+1)− VLJ(rc) r < rc

0 r > rc

VLJ(r) = 4ε

[(σ
r

)2n

−
(σ
r

)n]
rc = 21/n σd = σ
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Active dumbbell
Control parameters

Number of dumbbells N and box volume S in two dimensions:

packing fraction φ =
πσ2

dN

2SEnergy scales:

Active work 2σd Fact

thermal energy kBT
Péclet number Pe =

2Factσd

kBT

Active force Lv 7→ σd Fact/γ

viscous force ν 7→ γσ2
d/md

Reynolds number Re =
mdFact

σdγ2

Pe ∈ [0, 40] Re < 10−2

We keep the parameters in the harmonic (fene) and Lennard-Jones (repulsive)

potential fixed. Stiff molecule limit: vibrations frozen.

Interest in the φ, Fact and kBT dependencies.
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Initial conditions
Three cases

Crystal Hexatic order Random

with the desired φ
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Observables
Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our

case are the centres of the dumbbell beads.

The plane is subdivided into faces that correspond to the regions where

one site is closest.

Focus on the central light-green face

All points within this region are closer to the dot within

it than to any other dot on the plane

The region has five neighbouring cells from which it is

separated by an edge

The grey zone has six neighbouring cells
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Observables
Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our

case are the centres of the dumbbell beads.

The plane is subdivided into faces that correspond to the regions where

one site is closest.

With dashed lines, the triangular lattice

The vertices are the sites

Each site has six nearest neighbours

The angles of the edges of the triangular lattice are

θij = 2πj/6

The hexagonal lattice is the Voronoi tessellation
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Observables
Local density

For each bead, i the first estimate of the local density φVor
i is the ratio

between its surface and the area AVor
i of its Voronoi region:

φVor
i =

πσ2
d

4AVor
i

We next coarse-grain this value by averaging the single-bead densities

φVor
i over a disk S

(i)
R with radius R

[[φi]] ≡
∑
i∈S(i)

R

φVor
i /(πR2)

Visualisation: each bead is painted with the colour of its coarse-grained

local density value, [[φi]], denser in red, looser in blue.
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Observables
Local density colour map - an example

0.76

0.75

0.73

0.74

More on this figure later
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Observables
Positional order

The (fluctuating) local particle number density

ρ(r0) =

N∑
i=1

δ(r0 − ri)

with normalisation
∫
ddr0 ρ(r0) = N . In a homogeneous system ρ(r0) = N/V .

The density-density correlation function C(r+ r0, r0) = 〈ρ(r+ r0)ρ(r0)〉
that, for homogeneous (independence of r0) and isotropic (r 7→ |r| = r)

cases, is simply C(r + r0, r0) = C(r).

The double sum in C(r+ r0, r0) = 〈
∑

ij δ(r+ r0 − ri)δ(r0 − rj)〉 has

contributions from i = j and i 6= j : Cequal + Cdiff
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Observables
Positional order

The density-density correlation function

C(r + r0, r0) = 〈ρ(r + r0)ρ(r0)〉 =
∑

ij〈δ(r + r0 − ri)δ(r0 − rj)〉

is linked to the structure factor

S(q) ≡ 1

N
〈ρ̃(q)ρ̃(−q)〉 =

1

N
〈
N∑
i=1

N∑
j=1

e−iq·(ri−rj)〉

by

N S(q) =

∫
ddr1

∫
ddr2 C(r1, r2) e−iq·(r1−r2)
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Observables
Positional order

In isotropic cases, i.e. liquid phases, the pair correlation function

N
V g(r) = average number of particles

at distance r from a

tagged particle at r0

is linked to the structure factor

S(q) =
1

N
〈
N∑
i=1

N∑
j=1

e−iq·(ri−rj)〉

by
S(q) = 1 + N

V

∫
ddr g(r) eiq·r

Peaks in g(r) are related to peaks in S(q). The first peak in S(q) is at q0 =

2π/∆r where ∆r is the distance between peaks in g(r) (that is close to the

inter particle distance as well).
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Observables
Liquid

“Introduction to Modern Statistical Mechanics”, Chandler (OUP)
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Observables
Experiments & simulations of liquids

Inter-peak distance in g(r) is ∆r ' σ ' 3Å

Position of the first peak in S(q) is at q0 ' 2π/∆r ' 2 Å−1

“Structure Factor and Radial Distribution Function for Liquid Argon at 85K”,

Yarnell, Katz, Wenzel & König, Phys. Rev. Lett. 7, 2130 (1973)

22



Observables
Structure factor for crystals

ri and rj are the positions of the beads i and j and q is the wave-vector :

S(q) =
1

N

∑
ij

〈eiq·(ri−rj)〉

Visualisation: 2d representation in the (qx, qy) plane, Bragg peaks.

Triangular lattice in real space Hexagonal lattice in reciprocal space

Voronoi cell Brillouin zone
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Observables
Hexatic order

The local hexatic fluctuating order

ψ6i =
1

N i
nn

N i
nn∑

j=1

e6iθij

with N i
nn the number of nearest (Voronoi) neighbours of bead i and θij

the angle between the segment that connects i with its neighbour j and

the x axis.

For beads placed on the vertices of a triangular lattice, each bead has

six nearest-neighbours, j = 1, . . . , 6, the angles are θij = 2πj/6 and

ψ6i = 1 for all i.

measures orientational order
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Observables
Hexatic order

The local hexatic fluctuating order

ψ6i =
1

N i
nn

N i
nn∑

j=1

e6iθij

We also look at the average of the modulus and modulus of the average

2N ψ6 =

∣∣∣∣∣
N∑
i=1

ψ6i

∣∣∣∣∣ 2N Γ6 =
N∑
i=1

|ψ6i|

and the correlation functions

g6(r) =

∑
ij[〈ψ∗6iψ6j〉]

∣∣∣
rij=r

[〈|ψ6i|2〉]
Note that the normalisation is site independent
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Plan

1. The result: new phase diagram

2. The interacting dumbbells model
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Passive system
Structure factor - very low and very high density

φ = 0.66

φ = 0.76

Liquid

Solid

Bragg peaks

Primitive vectors

q1 = 4π
a
√

3

(√
3

2 ,−
1
2

)
q2 = 4π

a
√

3
(0, 1)

Unit of length

a =
(

π
2
√

3φ

)1/2
σd
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Passive system
Structure factor - progressive increase in density

φ = 0.66 φ = 0.72 φ = 0.76
(liquid) (liquid) (solid)

φ = 0.734 φ = 0.74 φ = 0.75
(co-existence) (co-existence) (co-existence)
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Observables
Local density colour map in the co-existence region

0.76

0.75

0.73

0.74

Zoom over an interface
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Passive system
Hexatic order parameter

Dumbells Hexatic local vector
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Passive system
Hexatic correlation function
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Passive system
Hexatic correlation function
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Passive system
Phase diagram

φCP

φRCP

φ

solid

hexatic

co-existence Really?

liquid
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Passive system
Phase diagram

φ

1st column

Local hexatic ψ6i

2nd column

Local density [[φi]]
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Passive system
Phase diagram

φ
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Passive system
Phase diagram

φ

Spatial correlation bet-

ween regions of high

density and regions of

large absolute value of

the local hexatic order

parameter
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Passive system
Local density & local hexatic parameter

φ = 0.734 φ = 0.74 φ = 0.75
(co-existence) (co-existence) (upper limit of co-existence)
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Passive system
Co-existence region: independence of the initial conditions

crystal

random

hexatic

t = 0 t1 t2
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Passive system
Dynamics: Below, in and above the co-existence region

φ = 0.72

φ = 0.75

φ = 0.76
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Plan

1. The result: new phase diagram

2. The interacting dumbbells model

3. Passive case

4. Active case

5. Discussion of

Mobility induced phase transition for purely repulsive interactions

vs.

just an extension of the Bernard & Krauth passive system scenario
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Active system
OLD phase diagram & new result

Connection between the two extremes?
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Active system
Active mechanism for segregation

Activity favours segregation
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Active system
Mechanism for segregation
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Active system
Structure factor Pe = 10 & Pe = 40

φ = 0.734 φ = 0.84 φ = 0.88

Pe = 10
(liquid) (upper limit of co-existence)

φ = 0.26 φ = 0.28 φ = 0.34

Pe = 40
(liquid) (lower limit of co-existence
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Dynamics
φ = 0.756 and Pe = 2 (co-existence)
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Dynamics
|ψ6i| at φ = 0.74 and Pe = 10 (co-existence)
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Active coarsening
at lower limit of coexistence

|ψ6i| |ψ6i| [[φi]] ψ6i
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Phase diagram
Active dumbbells

T = 0.05
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Discussion
To understand better

10 4

10 3

10 2

10 3 10 2 10 1 100 101 102 103 104

2
/2

t

t

Pe=40

=0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-4 -3 -2 -1  0  1  2  3  4

σ
x
P

(∆
x
)

∆x/σx

IV

φ=0.01
0.1
0.3
0.5
0.7

0.6

0.8

1.0

1.2

1.4

0.1 0.3 0.5 0.7 0.9

5 10 15 20 25 30 35 40
T
e
ff
(
F
a
c
t
,φ
)
/
T
e
ff
(
F
a
c
t
,φ
=
0
)

Fact

Pe

φ=0.1

0.2

0.3

0.4

0.5

49



Discussion
Two populations in co-existence region

Pe = 10, φ = 0.78 at t = 2500, 5000, 10000

The averaged hexatic modulus is computed for each particle on a radius of 10

σd around the particle itself, and a particle is considered to be inside a cluster

only if this value is greater than 0.75. Only such particles were taken into account

in the red peak on the right.

In black : all dumbbells
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Discussion
Some things to do

• Confirm this picture for active hard and soft disks.

• Understand how to define a meaningful pressure.

• Investigate the dynamics taking into account the heterogeneity of the

co-existence region.

• Revisit the effective temperature measurements.
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