Active dumbbells

Leticia F. Cugliandolo

Université Pierre et Marie Curie Sorbonne Universités

```
    leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia
```

Work in collaboration with
D. Loi \& S. Mossa (Grenoble, France, 2007-2009) and
G. Gonnella, P. Di Gregorio, G.-L. Laghezza, A. Lamura, A. Mossa \& A. Suma (Bari \& Trieste, Italia, 2013-2015)

Plan

5 lectures \& 2 exercise sessions

1. Introduction
2. Active Brownian dumbbells
3. Effective temperatures
4. Two-dimensional equilibrium phases
5. Two-dimensional collective behaviour of active systems

Fifth lecture

Plan

5 lectures \& 2 exercise sessions

1. Introduction
2. Active Brownian dumbbells
3. Effective temperatures
4. Two-dimensional equilibrium phases
5. Two-dimensional collective behaviour of active systems

Results \& questions

- Brand new Bernard \& Krauth two step transition scenario
Liquid (1st order) Hexatic (BKTHNY) Solid
confirmed for hard and soft passive disks
- Passive molecules?

Active disks and molecules?

- Mobility induced phase transition for purely repulsive interactions vs.
just an extension of the Bernard \& Krauth passive system scenario

Plan

1. The result: new phase diagram
2. The interacting dumbbells model
3. Passive case
4. Active case
5. Discussion of

Mobility induced phase transition for purely repulsive interactions vs.
just an extension of the Bernard \& Krauth passive system scenario

Phase diagram

Active dumbbells

$$
T=0.05
$$

Coexistence region

\& lines of constant proportion

Plan

1. The result: new phase diagram
2. The interacting dumbbells model
3. Passive case
4. Active case
5. Discussion of

Mobility induced phase transition for purely repulsive interactions vs.
just an extension of the Bernard \& Krauth passive system scenario

Interacting active dumbbells

Many-body interacting system

Two spherical atoms with diameter σ_{d} and mass m_{d}

Massless spring modelled by a finite extensible non-linear elastic (fene) force between the beads i and j belonging to the same dumbbell, $\mathbf{F}_{\text {fene }}=-\frac{k\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}{1-r_{i j}^{2} / r_{0}^{2}}$, with an additional repulsive contribution (WCA) to avoid colloidal overlapping.

Polar active force along the main molecular axis $\mathbf{F}_{\text {act }}=F_{\text {act }} \hat{\mathbf{n}}$
Purely repulsive interaction between colloids in different molecules.
Langevin modelling of the interaction with the embedding fluid:
isotropic viscous forces, $-\gamma \boldsymbol{v}_{i}$, and independent noises, $\boldsymbol{\eta}_{i}$, on the beads.

Particles with shape

e.g., a diatomic molecule or a dumbbell

$$
\begin{aligned}
m_{\mathrm{d}} \ddot{\boldsymbol{r}}_{i}(t) & =-\gamma \dot{\boldsymbol{r}}_{i}(t)+\mathbf{F}_{\mathrm{pot}_{\mathrm{i}}}\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{i+1}\right)+\boldsymbol{\eta}_{i} \\
m_{\mathrm{d}} \ddot{\boldsymbol{r}}_{i+1}(t) & =-\gamma \dot{\boldsymbol{r}}_{i+1}(t)+\mathbf{F}_{\operatorname{pot}_{\mathrm{i}+1}}\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{i+1}\right)+\boldsymbol{\eta}_{i+1}
\end{aligned}
$$

with $\mathbf{F}_{\text {pot }}=\mathbf{F}_{\text {wca }}+\mathbf{F}_{\text {fene }}, V=V_{\text {wca }}+V_{\text {fene }}$ and

$$
\begin{aligned}
& V_{\mathrm{wca}}\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{i+1}\right)= \begin{cases}V_{L J}\left(r_{i, i+1}\right)-V_{L J}\left(r_{c}\right) & r<r_{c} \\
0 & r>r_{c}\end{cases} \\
& V_{L J}(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{2 n}-\left(\frac{\sigma}{r}\right)^{n}\right] \quad r_{c}=2^{1 / n} \sigma_{\mathrm{d}}=\sigma
\end{aligned}
$$

Active dumbbell

Control parameters

Number of dumbbells N and box volume S in two dimensions:

Energy scales:
Active work $2 \sigma_{\mathrm{d}} F_{\text {act }}$
thermal energy $k_{B} T$

$$
\text { Péclet number } \mathrm{Pe}=\frac{2 F_{\mathrm{act}} \sigma_{\mathrm{d}}}{k_{B} T}
$$

Active force $L v \mapsto \sigma_{\mathrm{d}} F_{\text {act }} / \gamma$ viscous force $\nu \mapsto \gamma \sigma_{\mathrm{d}}^{2} / m_{\mathrm{d}}$

$$
\text { packing fraction } \phi=\frac{\pi \sigma_{\mathrm{d}}^{2} N}{2 S}
$$

$$
\mathrm{Pe} \in[0,40] \quad \operatorname{Re}<10^{-2}
$$

We keep the parameters in the harmonic (fene) and Lennard-Jones (repulsive) potential fixed. Stiff molecule limit: vibrations frozen.

Interest in the $\phi, F_{\text {act }}$ and $k_{B} T$ dependencies.

Initial conditions

Three cases

Crystal

Hexatic order

Random
with the desired ϕ

Observables

Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our case are the centres of the dumbbell beads.

The plane is subdivided into faces that correspond to the regions where one site is closest.

Focus on the central light-green face
All points within this region are closer to the dot within
it than to any other dot on the plane
The region has five neighbouring cells from which it is
separated by an edge
The grey zone has six neighbouring cells

Observables

Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our case are the centres of the dumbbell beads.

The plane is subdivided into faces that correspond to the regions where one site is closest.

With dashed lines, the triangular lattice
The vertices are the sites

Each site has six nearest neighbours
The angles of the edges of the triangular lattice are

$$
\theta_{i j}=2 \pi j / 6
$$

The hexagonal lattice is the Voronoi tessellation

Observables

Local density

For each bead, i the first estimate of the local density $\phi_{i}^{\text {Vor }}$ is the ratio between its surface and the area A_{i}^{Vor} of its Voronoi region:

$$
\phi_{i}^{\mathrm{Vor}}=\frac{\pi \sigma_{\mathrm{d}}^{2}}{4 A_{i}^{\mathrm{Vor}}}
$$

We next coarse-grain this value by averaging the single-bead densities $\phi_{i}^{\text {Vor }}$ over a disk $S_{R}^{(i)}$ with radius R

$$
\left[\left[\phi_{i}\right]\right] \equiv \sum_{i \in S_{R}^{(i)}} \phi_{i}^{\mathrm{Vor}} /\left(\pi R^{2}\right)
$$

Visualisation: each bead is painted with the colour of its coarse-grained local density value, $\left[\left[\phi_{i}\right]\right]$, denser in red, looser in blue.

Observables

Local density colour map - an example

More on this figure later

Observables

Positional order

The (fluctuating) local particle number density

$$
\rho\left(\boldsymbol{r}_{0}\right)=\sum_{i=1}^{N} \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{i}\right)
$$

with normalisation $\int d^{d} \boldsymbol{r}_{0} \rho\left(\boldsymbol{r}_{0}\right)=N$. In a homogeneous system $\rho\left(\boldsymbol{r}_{0}\right)=N / V$.

The density-density correlation function $C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=\left\langle\rho\left(\boldsymbol{r}+\boldsymbol{r}_{0}\right) \rho\left(\boldsymbol{r}_{0}\right)\right\rangle$ that, for homogeneous (independence of \boldsymbol{r}_{0}) and isotropic ($\boldsymbol{r} \mapsto|\boldsymbol{r}|=r$) cases, is simply $C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=C(r)$.

The double sum in $C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=\left\langle\sum_{i j} \delta\left(\boldsymbol{r}+\boldsymbol{r}_{0}-\boldsymbol{r}_{i}\right) \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{j}\right)\right\rangle$ has contributions from $i=j$ and $i \neq j: C_{\text {equal }}+C_{\text {diff }}$

Observables

Positional order

The density-density correlation function
$C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=\left\langle\rho\left(\boldsymbol{r}+\boldsymbol{r}_{0}\right) \rho\left(\boldsymbol{r}_{0}\right)\right\rangle=\sum_{i j}\left\langle\delta\left(\boldsymbol{r}+\boldsymbol{r}_{0}-\boldsymbol{r}_{i}\right) \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{j}\right)\right\rangle$
is linked to the structure factor

$$
S(\boldsymbol{q}) \equiv \frac{1}{N}\langle\tilde{\rho}(\boldsymbol{q}) \tilde{\rho}(-\boldsymbol{q})\rangle=\frac{1}{N}\left\langle\sum_{i=1}^{N} \sum_{j=1}^{N} e^{-\mathrm{i} \boldsymbol{q} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}\right\rangle
$$

by

$$
N S(\boldsymbol{q})=\int d^{d} \boldsymbol{r}_{1} \int d^{d} \boldsymbol{r}_{2} C\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) e^{-\mathrm{i} \boldsymbol{q} \cdot\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)}
$$

Observables

Positional order

In isotropic cases, i.e. liquid phases, the pair correlation function

$$
\begin{aligned}
\frac{N}{V} g(r)= & \text { average number of particles } \\
& \text { at distance } r \text { from a } \\
& \text { tagged particle at } \boldsymbol{r}_{0}
\end{aligned}
$$

is linked to the structure factor

$$
S(\boldsymbol{q})=\frac{1}{N}\left\langle\sum_{i=1}^{N} \sum_{j=1}^{N} e^{-\mathrm{i} \boldsymbol{q} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}\right\rangle
$$

by

$$
S(\boldsymbol{q})=1+\frac{N}{V} \int d^{d} \boldsymbol{r} g(r) e^{\mathrm{i} \boldsymbol{q} \cdot \boldsymbol{r}}
$$

Peaks in $g(r)$ are related to peaks in $S(q)$. The first peak in $S(q)$ is at $q_{0}=$ $2 \pi / \Delta r$ where Δr is the distance between peaks in $g(r)$ (that is close to the inter particle distance as well).

Observables

Liquid

"Introduction to Modern Statistical Mechanics", Chandler (OUP)

Observables

Experiments \& simulations of liquids

Inter-peak distance in $g(r)$ is $\Delta r \simeq \sigma \simeq 3 \AA$
Position of the first peak in $S(q)$ is at $q_{0} \simeq 2 \pi / \Delta r \simeq 2 \AA^{-1}$
"Structure Factor and Radial Distribution Function for Liquid Argon at 85 K ",
Yarnell, Katz, Wenzel \& König, Phys. Rev. Lett. 7, 2130 (1973)

Observables

Structure factor for crystals

r_{i} and r_{j} are the positions of the beads i and j and q is the wave-vector:

$$
S(\boldsymbol{q})=\frac{1}{N} \sum_{i j}\left\langle e^{\mathrm{i} \boldsymbol{q} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}\right\rangle
$$

Visualisation: $2 d$ representation in the $\left(q_{x}, q_{y}\right)$ plane, Bragg peaks.

Triangular lattice in real space

Hexagonal lattice in reciprocal space

Brillouin zone

Observables

Hexatic order

The local hexatic fluctuating order

$$
\psi_{6 i}=\frac{1}{N_{\mathrm{nn}}^{i}} \sum_{j=1}^{N_{\mathrm{nn}}^{i}} e^{6 \mathrm{i} \theta_{i j}}
$$

with N_{nn}^{i} the number of nearest (Voronoi) neighbours of bead i and $\theta_{i j}$ the angle between the segment that connects i with its neighbour j and the x axis.

For beads placed on the vertices of a triangular lattice, each bead has six nearest-neighbours, $j=1, \ldots, 6$, the angles are $\theta_{i j}=2 \pi j / 6$ and $\psi_{6 i}=1$ for all i.

Observables

Hexatic order

The local hexatic fluctuating order

$$
\psi_{6 i}=\frac{1}{N_{\mathrm{nn}}^{i}} \sum_{j=1}^{N_{\mathrm{nn}}^{i}} e^{6 \mathrm{i}_{i j}}
$$

We also look at the average of the modulus and modulus of the average

$$
2 N \psi_{6}=\left|\sum_{i=1}^{N} \psi_{6 i}\right| \quad 2 N \Gamma_{6}=\sum_{i=1}^{N}\left|\psi_{6 i}\right|
$$

and the correlation functions

$$
g_{6}(r)=\frac{\left.\sum_{i j}\left[\left\langle\psi_{6 i}^{*} \psi_{6 j}\right\rangle\right]\right|_{r_{i j}=r}}{\left.\left[\left.\langle | \psi_{6 i}\right|^{2}\right\rangle\right]}
$$

Note that the normalisation is site independent

Plan

1. The result: new phase diagram
2. The interacting dumbbells model
3. Passive case
4. Active case
5. Discussion of

Mobility induced phase transition for purely repulsive interactions vs.
just an extension of the Bernard \& Krauth passive system scenario

Passive system

Structure factor - very low and very high density
$\phi=0.66$

$\phi=0.76$

Liquid

Solid
Bragg peaks
Primitive vectors

$$
\begin{aligned}
& \boldsymbol{q}_{1}=\frac{4 \pi}{a \sqrt{3}}\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\
& \boldsymbol{q}_{2}=\frac{4 \pi}{a \sqrt{3}}(0,1) \\
& \text { Unit of length } \\
& \boldsymbol{a}=\left(\frac{\pi}{2 \sqrt{3} \phi}\right)^{1 / 2} \sigma_{\mathrm{d}}
\end{aligned}
$$

Passive system

Structure factor - progressive increase in density

$$
\phi \underset{\text { (liquid) }}{=0.66}
$$

$$
\phi=0.734
$$

(co-existence)
$\phi=0.72$ (liquid)

$\phi=0.74$
(co-existence)
$\phi=\underset{\text { (solid) }}{0.76}$

$$
\begin{aligned}
& \phi=0.75 \\
& \text { (co-existence) }
\end{aligned}
$$

Observables

Local density colour map in the co-existence region

Passive system

Hexatic order parameter

Dumbells

Hexatic local vector

Passive system

Hexatic correlation function

Solid

Hexatic

Liquid

Passive system

Hexatic correlation function

Saturation

Algebraic

Exponential

Passive system

Phase diagram

Spatial correlation between regions of high density and regions of large absolute value of the local hexatic order parameter

Passive system

Local density \& local hexatic parameter

(upper limit of co-existence)

ϕ_{i}

Passive system

Co-existence region: independence of the initial conditions

Passive system

Dynamics: Below, in and above the co-existence region

Plan

1. The result: new phase diagram
2. The interacting dumbbells model
3. Passive case
4. Active case
5. Discussion of

Mobility induced phase transition for purely repulsive interactions vs.
just an extension of the Bernard \& Krauth passive system scenario

Active system

OLD phase diagram \& new result

Connection between the two extremes?

Active system

Active mechanism for segregation

Activity favours segregation

Active system

Mechanism for segregation

Active system

Structure factor $\mathrm{Pe}=10 \& \mathrm{Pe}=40$

Dynamics

$$
\phi=0.756 \text { and } \mathrm{Pe}=2 \text { (co-existence) }
$$

Dynamics

$\left|\psi_{6 i}\right|$ at $\phi=0.74$ and $\mathbf{P e}=\mathbf{1 0}$ (co-existence)

Active coarsening

at lower limit of coexistence

(a) $\mathrm{Pt}=2$

(b) $\mathrm{Pt}=10$

$\psi 6 i$
$\left|\psi_{6 i}\right|$

(c) $\mathrm{Pe}=20$

$\left[\left[\phi_{i}\right]\right]$
$\psi_{6 i}$

Phase diagram

Active dumbbells

$$
T=0.05
$$

Discussion

To understand better

Discussion

Two populations in co-existence region

$$
\mathrm{Pe}=10, \phi=0.78 \text { at } t=2500,5000,10000
$$

The averaged hexatic modulus is computed for each particle on a radius of 10 σ_{d} around the particle itself, and a particle is considered to be inside a cluster only if this value is greater than 0.75 . Only such particles were taken into account in the red peak on the right.

In black : all dumbbells

Discussion

Some things to do

- Confirm this picture for active hard and soft disks.
- Understand how to define a meaningful pressure.
- Investigate the dynamics taking into account the heterogeneity of the co-existence region.
- Revisit the effective temperature measurements.

